


# **XQS319-40LY**

# QSFP28 4WDM 40 km Optical Transceiver Module



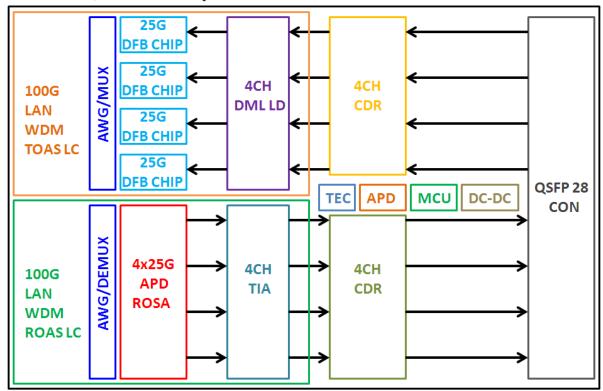
## **Applications**

- IEEE 802.3ba 100GBASE ER4 Links
- Client-side 100G interconnections

#### **Features**

- 4 channels full-duplex transceiver modules
- Supports data rate up to 103.1 Gb/s
- Supports QSFP28 4WDM 40 km MSA
- 4 x 25 Gb/s DFB-based LAN-WDM Cooling transmitter
- 4 channels APD ROSA
- Internal CDR circuits on both receiver and transmitter channels
- Low power consumption < 3.8 W</li>
- Hot Pluggable QSFP form factor
- Up to 30 km reach for G.652 SMF without FEC
- Up to 40 km reach for G.652 SMF with FEC
- Duplex LC receptacles
- Operating case temperature: 0°C to 70°C
- 3.3 power supply voltage
- RoHS compliant and lead free

### **Description**


This product is a 100Gb/s transceiver module designed for optical communication applications compliant to QSFP28 4WDM 40 km MSA standard. The module converts 4 input channels of 25 Gb/s electrical data to 4 channels of LAN WDM optical signals and then multiplexes them into a single channel for 100Gb/s optical transmission. Reversely on the receiver side, the module de-multiplexes a 100 Gb/s optical input into 4 channels of LAN WDM optical signals and then converts them to 4 output channels of electrical data.

The central wavelengths of the 4 LAN WDM channels are 1295.56, 1300.05, 1304.58 and 1309.14 nm as members of the LAN WDM wavelength grid defined in IEEE 802.3ba. The high performance cooled LAN WDM DFB transmitters and high sensitivity APD receivers provide superior performance for 100Gigabit Ethernet applications up to 30 km links without FEC and up to 40 km links with FEC interconnections.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP+ Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.



# QSFP28 ER4/4WDM 40km CIRCUIT STRUCTURE



# **Absolute Maximum Ratings**

| Parameters                  | Symbol   | Min. | Max.                 | Unit |
|-----------------------------|----------|------|----------------------|------|
| Power Supply Voltage        | $V_{CC}$ | -0.3 | 3.6                  | V    |
| Input Voltage               | $V_{in}$ | -0.3 | V <sub>CC</sub> +0.3 | V    |
| Storage Temperature         | $T_{st}$ | -20  | 85                   | °C   |
| Operating Case Temperature  | $T_{op}$ | 0    | 70                   | °C   |
| Humidity (non-condensing)   | Rh       | 5    | 85                   | %    |
| Damage Threshold, Each Lane | TH       | 5.5  |                      | dBm  |

# **Recommended Operating Conditions**

| Parameter                  | Symbol | Min.  | Typical  | Max. | Unit |
|----------------------------|--------|-------|----------|------|------|
| Supply Voltage             | Vcc    | 3.13  | 3.3      | 3.47 | V    |
| Operating Case temperature | Tca    | 0     |          | 70   | °C   |
| Data Rate Per Lane         | fd     |       | 25.78125 |      | Gbps |
| Humidity                   | Rh     | 5     |          | 85   | %    |
| Power Dissipation          | Р      |       |          | 3.8  | W    |
| Link Distance with G.652   | D      | 0.002 |          | 40   | km   |



# **Electrical Specifications**

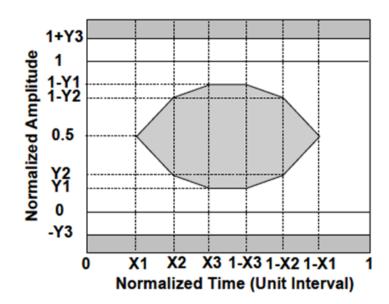
| Parameter                                | Symbol       | Min   | Typical | Max  | Unit |
|------------------------------------------|--------------|-------|---------|------|------|
| Power Consumption                        | Р            |       |         | 3.5  | W    |
| Supply Current                           | Icc          |       |         | 1.06 | Α    |
| Transceiver Power-on Initialization Time |              |       |         | 2000 | ms   |
| Transm                                   | itter (Each  | Lane) |         |      |      |
| Single-ended Input Voltage Tolerance     |              | -0.3  |         | 4.0  | V    |
| AC Common Mode Input Voltage Tolerance   |              | 15    |         |      | mV   |
| Differential Input Voltage               |              | 50    |         |      | mVpp |
| Differential Input Voltage Swing         | Vin          |       |         | 900  | mVpp |
| Differential Input Impedance             | Zin          | 90    | 100     | 110  | Ohm  |
| Recei                                    | ver (Each La | ane)  |         |      |      |
| Single-ended Output Voltage              |              | -0.3  |         | 4.0  | V    |
| AC Common Mode Output Voltage            |              |       |         | 7.5  | mV   |
| Differential Output Voltage Swing        | Vout         | 300   |         | 850  | mVpp |
| Differential Output Impedance            | Zout         | 90    | 100     | 110  | Ohm  |

## Note

Power-on Initialization Time is the time from when the power supply voltages reach and remain above the minimum recommended operating supply voltages to the time when the module is fully functional.



# **Optical Characteristics**


| Parameter                                                                     | Symbol           | Min         | Typical       | Max        | Unit  | Notes |
|-------------------------------------------------------------------------------|------------------|-------------|---------------|------------|-------|-------|
| Talallecei                                                                    | LO               | 1294.53     | 1295.56       | 1296.59    | nm    | Notes |
|                                                                               | L1               | 1299.02     | 1300.05       | 1301.09    | nm    |       |
| Lane Wavelength                                                               | L2               | 1303.54     | 1304.58       | 1305.63    |       |       |
|                                                                               |                  |             |               |            | nm    |       |
|                                                                               | L3               | 1308.09     | 1309.14       | 1310.19    | nm    |       |
|                                                                               | Transmi          |             |               |            | 15    |       |
| SMSR                                                                          | SMSR             | 30          |               |            | dB    |       |
| Total Average Launch Power                                                    | P <sub>T</sub>   |             |               | 12.5       | dBm   |       |
| Average Launch Power, each Lane                                               | P <sub>AVG</sub> | -2.5        |               | 6.5        | dBm   |       |
| OMA, each Lane                                                                | P <sub>OMA</sub> | 0.5         |               | 6.5        | dBm   | 1     |
| Difference in Launch Power between any Two Lanes (OMA)                        | Ptx,diff         |             |               | 3          | dB    |       |
| Launch Power in OMA minus Transmitter and Dispersion Penalty (TDP), each Lane |                  | -0.5        |               |            | dBm   |       |
| TDP, each Lane                                                                | TDP              |             |               | 3.0        | dB    |       |
| Extinction Ratio                                                              | ER               | 4.5         |               |            | dB    |       |
| RIN <sub>20</sub> OMA                                                         | RIN              |             |               | -130       | dB/Hz |       |
| Optical Return Loss Tolerance                                                 | TOL              |             |               | 20         | dB    |       |
| Transmitter Reflectance                                                       | $R_T$            |             |               | -12        | dB    |       |
| Eye Mask coordinates:<br>X1, X2, X3, Y1, Y2, Y3                               |                  | {0.25, 0.4, | . 0.45, 0.25, | 0.28, 0.4} |       | 2     |
| Average Launch Power OFF Transmitter, each Lane                               | Poff             |             |               | -30        | dBm   |       |
|                                                                               | Receiv           | er          |               |            |       |       |
| Damage Threshold, each Lane                                                   | $TH_d$           | -6          |               |            | dBm   | 3     |
| Average Receive Power, each Lane                                              |                  | -20.5       |               | -7         | dBm   |       |
| Receive Power (OMA), each Lane                                                |                  |             |               | -7         | dBm   |       |
| Receiver Sensitivity (OMA), each                                              |                  |             |               |            |       |       |
| Lane (BER = $5x10^{-5}$ )                                                     | SEN1             |             |               | -18.5      | dBm   |       |
| Receiver Sensitivity (OMA), each Lane                                         |                  |             |               |            |       |       |
| $(BER = 1x10^{-12})$                                                          | SEN1             |             | -15           | dBm        |       |       |
| Stressed Receiver Sensitivity (OMA), each                                     |                  |             |               |            |       |       |
| Lane (BER = 5x10 <sup>-5</sup> )                                              |                  |             |               | -16        | dBm   | 4     |
| Difference in Receive Power between any Two Lanes (OMA)                       | Prx,diff         |             |               | 3.6        | dB    |       |
| LOS Assert                                                                    | LOSA             |             | -26           |            | dBm   |       |
| LOS Deassert                                                                  | LOSD             |             | -24           |            | dBm   |       |
| LOS Hysteresis                                                                | LOSH             | 0.5         |               |            | dB    |       |
| Receiver Electrical 3 dB upper Cutoff                                         |                  |             |               | 24         |       |       |
| Frequency, each Lane                                                          | Fc               |             |               | 31         | GHz   |       |



| Vertical Eye Closure Penalty, each Lane |  | 2.5  | dB | 5 |
|-----------------------------------------|--|------|----|---|
| Stressed Eye J2 Jitter, each Lane       |  | 0.33 | UI |   |
| Stressed Eye J9 Jitter, each Lane       |  | 0.48 | UI |   |

#### Notes

- 1. Even if the TDP < 1 dB, the OMA min must exceed the minimum value specified here.
- 2. See Figure 4 below.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 4. Measured with conformance test signal at receiver input for BER =  $5x10^{-5}$ .
- 5. Vertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.





# **Pin Descriptions**

| Pin | Logic      | Symbol  | Name/Description                                    | Ref. |
|-----|------------|---------|-----------------------------------------------------|------|
| 1   |            | GND     | Module Ground                                       | 1    |
| 2   | CML-I      | Tx2-    | Transmitter inverted data input                     |      |
| 3   | CML-I      | Tx2+    | Transmitter non-inverted data input                 |      |
| 4   |            | GND     | Module Ground                                       | 1    |
| 5   | CML-I      | Tx4-    | Transmitter inverted data input                     |      |
| 6   | CML-I      | Tx4+    | Transmitter non-inverted data input                 |      |
| 7   |            | GND     | Module Ground                                       | 1    |
| 8   | LVTTL-I    | MODSEIL | Module Select                                       | 2    |
| 9   | LVTTL-I    | ResetL  | Module Reset                                        | 2    |
| 10  |            | VCCRx   | +3.3v Receiver Power Supply                         |      |
| 11  | LVCMOS-I   | SCL     | 2-wire Serial interface clock                       | 2    |
| 12  | LVCMOS-I/O | SDA     | 2-wire Serial interface data                        | 2    |
| 13  |            | GND     | Module Ground                                       | 1    |
| 14  | CML-O      | RX3+    | Receiver non-inverted data output                   |      |
| 15  | CML-O      | RX3-    | Receiver inverted data output                       |      |
| 16  |            | GND     | Module Ground                                       | 1    |
| 17  | CML-O      | RX1+    | Receiver non-inverted data output                   |      |
| 18  | CML-O      | RX1-    | Receiver inverted data output                       |      |
| 19  |            | GND     | Module Ground                                       | 1    |
| 20  |            | GND     | Module Ground                                       | 1    |
| 21  | CML-O      | RX2-    | Receiver inverted data output                       |      |
| 22  | CML-O      | RX2+    | Receiver non-inverted data output                   |      |
| 23  |            | GND     | Module Ground                                       | 1    |
| 24  | CML-O      | RX4-    | Receiver inverted data output                       |      |
| 25  | CML-O      | RX4+    | Receiver non-inverted data output                   |      |
| 26  |            | GND     | Module Ground                                       | 1    |
| 27  | LVTTL-O    | ModPrsL | Module Present, internal pulled down to GND         |      |
| 28  | LVTTL-O    | IntL    | Interrupt output, should be pulled up on host board | 2    |
| 29  |            | VCCTx   | +3.3v Transmitter Power Supply                      |      |
| 30  |            | VCC1    | +3.3v Power Supply                                  |      |
| 31  | LVTTL-I    | LPMode  | Low Power Mode                                      | 2    |
| 32  |            | GND     | Module Ground                                       | 1    |
| 33  | CML-I      | Tx3+    | Transmitter non-inverted data input                 |      |
| 34  | CML-I      | Tx3-    | Transmitter inverted data input                     |      |
| 35  |            | GND     | Module Ground                                       | 1    |
| 36  | CML-I      | Tx1+    | Transmitter non-inverted data input                 |      |
| 37  | CML-I      | Tx1-    | Transmitter inverted data input                     |      |
| 38  |            | GND     | Module Ground                                       | 1    |



#### Notes:

- 1. Module circuit ground is isolated from module chassis ground within the module.
- 2. Open collector; should be pulled up with 4.7k 10k ohms on host board to a voltage between 3.15Vand 3.6V.

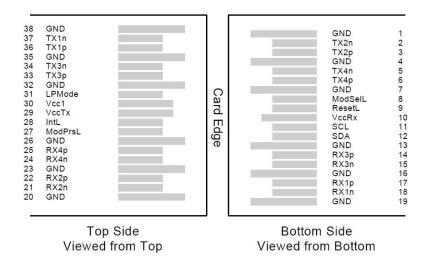



Figure 2. Electrical Pin-out Details

#### **ModSelL Pin**

The ModSelL is an input pin. When held low by the host, the module responds to 2-wire serial communication commands. The ModSelL allows the use of multiple QSFP modules on a single 2-wire interface bus. When the ModSelL is "High", the module will not respond to any 2-wire interface communication from the host.

ModSelL has an internal pull-up in the module.

## **ResetL Pin**

Reset. LPMode\_Reset has an internal pull-up in the module. A low level on the ResetL pin for longer than the minimum pulse length (t\_Reset\_init) initiates a complete module reset, returning all user module settings to their default state. Module Reset Assert Time (t\_init) starts on the rising edge after the low level on the ResetL pin is released. During the execution of a reset (t\_init) the host shall disregard all status bits until the module indicates a completion of the reset interrupt. The module indicates this by posting an IntL signal with the Data\_Not\_Ready bit negated. Note that on power up (including hot insertion) the module will post this completion of reset interrupt without requiring a reset.

#### **LPMode Pin**

XenOpt QSFP28 SR4 operate in the low power mode (less than 1.5 W power consumption).

This pin active high will decrease power consumption to less than 1W.

#### **ModPrsL Pin**

ModPrsL is pulled up to Vcc on the host board and grounded in the module. The ModPrsL is asserted "Low" when the module is inserted and deasserted "High" when the module is physically absent from the host connector.



#### **IntL Pin**

IntL is an output pin. When "Low", it indicates a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt by using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled up to Vcc on the host board.

## **Power Supply Filtering**

The host board should use the power supply filtering shown in Figure 3.

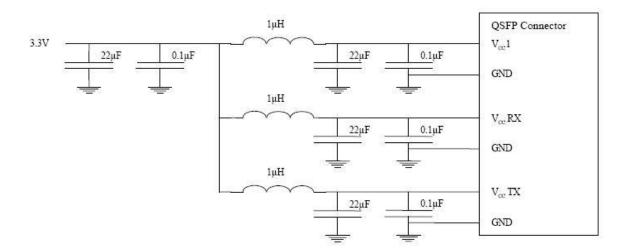



Figure 3. Host Board Power Supply Filtering



# **Timing for Soft Control and Status Functions**

| Parameter                                        | Symbol       | Max  | Unit | Conditions                                                                                                                                                      |
|--------------------------------------------------|--------------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initialization Time                              | t_init       | 2000 | ms   | Time from power on <sup>1</sup> , hot plug or rising edge of Reset until the module is fully functional <sup>2</sup>                                            |
| Reset Init Assert<br>Time                        | t_reset_init | 2    | μs   | A Reset is generated by a low level longer than the minimum reset pulse time present on the ResetL pin.                                                         |
| Serial Bus Hardware<br>Ready Time                | t_serial     | 2000 | ms   | Time from power on <sup>1</sup> until module responds to data transmission over the 2-wire serial bus                                                           |
| Monitor Data Ready<br>Time                       | t_data       | 2000 | ms   | Time from power on <sup>1</sup> to data not ready, bit 0 of Byte 2, deasserted and IntL asserted                                                                |
| Reset Assert Time                                | t_reset      | 2000 | ms   | Time from rising edge on the ResetL pin until the module is fully functional <sup>2</sup>                                                                       |
| LPMode Assert Time                               | ton_LPMode   | 100  | μs   | Time from assertion of LPMode (Vin:LPMode = Vih) until module power consumption enters lower Power Level                                                        |
| IntL Assert Time                                 | ton_IntL     | 200  | ms   | Time from occurrence of condition triggering IntL until Vout:IntL = Vol                                                                                         |
| IntLDeassert Time                                | toff_IntL    | 500  | μs   | Time from clear on read <sup>3</sup> operation of associated flag until Vout:IntL = Voh. This includes deassert times for Rx LOS, Tx Fault and other flag bits. |
| Rx LOS Assert Time                               | ton_los      | 100  | ms   | Time from Rx LOS state to Rx LOS bit set and IntL asserted                                                                                                      |
| Tx Fault Assert Time                             | ton_Txfault  | 200  | ms   | Time from Tx Fault state to Tx Fault bit set and IntL asserted                                                                                                  |
| Flag Assert Time                                 | ton_flag     | 200  | ms   | Time from occurrence of condition triggering flag to associated flag bit set and IntL asserted                                                                  |
| Mask Assert Time                                 | ton_mask     | 100  | ms   | Time from mask bit set <sup>4</sup> until associated IntL<br>assertion is inhibited                                                                             |
| Mask Deassert Time                               | toff_mask    | 100  | ms   | Time from mask bit cleared <sup>4</sup> until associated IntlL operation resumes                                                                                |
| ModSelL Assert Time                              | ton_ModSelL  | 100  | μs   | Time from assertion of ModSelL until module responds to data transmission over the 2-wire serial bus                                                            |
| ModSelLDeassert Time                             | toff_ModSelL | 100  | μs   | Time from deassertion of ModSelL until the module does not respond to data transmission over the 2-wire serial bus                                              |
| Power_over-ride or<br>Power-set Assert Time      | ton_Pdown    | 100  | ms   | Time from P_Down bit set <sup>4</sup> until module power consumption enters lower Power Level                                                                   |
| Power_over-ride or<br>Power-set Deassert<br>Time | toff_Pdown   | 300  | ms   | Time from P_Down bit cleared <sup>4</sup> until the module is fully functional3                                                                                 |

#### Note:

- 1. Power on is defined as the instant when supply voltages reach and remain at or above the minimum specified value.
- $2. \ Fully \ functional \ is \ defined \ as \ IntL \ asserted \ due \ to \ data \ not \ ready \ bit, \ bit \ 0 \ byte \ 2 \ deasserted.$
- 3. Measured from falling clock edge after stop bit of read transaction.
- 4. Measured from falling clock edge after stop bit of write transaction.



## **Mechanical Specifications**

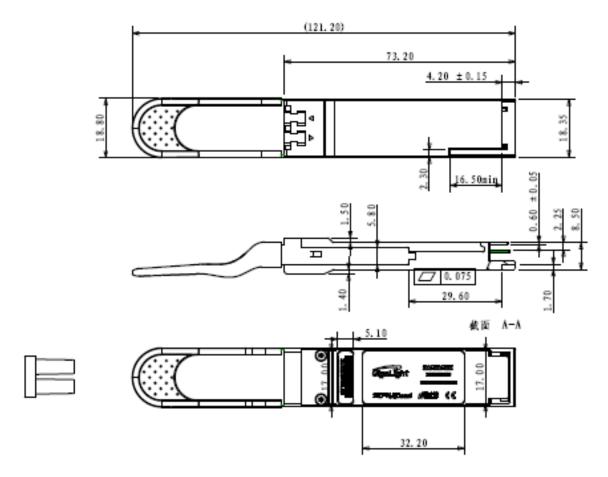



Figure 4. Mechanical Specifications

#### **References**

- 1. SFF-8436 QSFP+
- 2. Ethernet 100GBASE-ER4
- 3. QSFP28 4WDM 40 km

#### **ESD**

This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4/JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

## **Laser Safety**

This is a Class 1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

XQS319-40LY QSFP28 4WDM 40 km Transceiver

# Ordering information<sup>1</sup>

| PN          | Description                                  |
|-------------|----------------------------------------------|
| XQS319-40LY | QSFP28 4WDM, LAN_WDM 40 km, DDM, 0°C ~ +70°C |

#### Notes:

#### **Important Notice**

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by XenOpt before they become applicable to any particular order or contract.  $\label{eq:contract} % \begin{center} \begin{cen$ 

The publication of information in this data sheet does not imply freedom from patent or other protective rights of XenOpt or others. Further details are available from any XenOpt sales representative.

To find out more, please contact



<sup>&</sup>lt;sup>1</sup> Specification may change without notice. For accurate specification please contact XenOpt reseller before placing an order. The content of this document is subject to change without notice. Please specify any compatibility requirements at time of ordering. Standard MSA compatible pluggable components may not work or some function of these components may not be available in devices that require customized compatible devices. Pluggable components compatible with one type of communications equipment may not work in other type of communications equipment.