

XSS311-40Lx

1.25 Gbps SFP Optical Transceiver, 40 km Reach

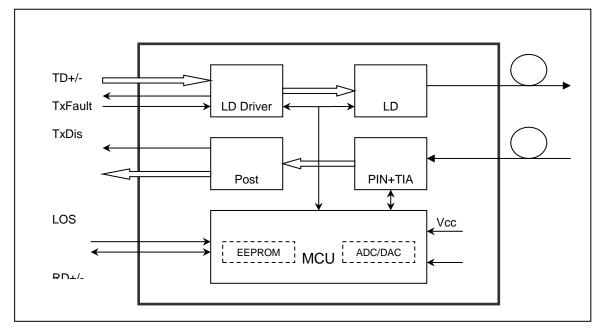
Applications

- Gigabit Ethernet
- Fiber Channel
- Switch to Switch interface
- Switched backplane applications
- Router/Server interface
- Other optical transmission systems

Features

- Data-rate of 1.25 Gbps operation
- 1310 nm DFB laser and PIN photodetector for 40 km transmission
- Compliant with SFP MSA and SFF-8472 with duplex LC receptacle
- Digital Diagnostic Monitoring: Internal Calibration or External Calibration
- Compatible with SONET OC-24-LR-1
- Compatible with RoHS
- +3.3 V single power supply
- Operating case temperature:
 - Standard : 0 to +70°C Industrial : -40 to +85°C

Description


The SFP transceivers are high performance, cost effective modules supporting data-rate of 1.25 Gbps and 40 km transmission distance with SMF.

The transceiver consists of three sections: a DFB laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements.

The transceivers are compatible with SFP Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA.

XenOpt

Module Block Diagram

Absolute Maximum Ratings

Table 1Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Table 2Recommended Operating Conditions

Paramete	r	Symbol	Min	Typical	Max	Unit
Operating Case	Standard	Тс	0		+70	°C
Temperature	perature Industrial		-40		+85	°C
Power Supply V	'oltage	Vcc	3.13	3.3	3.47	V
Power Supply Current		lcc			300	mA
Data Rate				1.25		Gbps

Optical and Electrical Characteristics

 Table 3
 Optical and Electrical Characteristics

Ра	rameter	Symbol	Min	Typical	Max	Unit	Notes
		т	ransmitter	· · · · · · · · · · · · · · · · · · ·		·	
Centre Wavel	ength	λc	1260	1310	1360	nm	
Spectral Widt	h (-20dB)	Δλ			1	nm	
Side Mode Su	ppression Ratio	SMSR	30			dB	
Average Outp	out Power	Pout	-5		0	dBm	1
Extinction Rat	tio	ER	9			dB	
Optical Rise/F	all Time (20%~80%)	t _r /t _f			0.26	ns	
Data Input Sw	ving Differential	V _{IN}	400		1800	mV	2
Input Differer	ntial Impedance	Z _{IN}	90	100	110	Ω	
	Disable		2.0		Vcc	V	
TX Disable	Enable		0		0.8	V	
	Fault		2.0		Vcc	V	
TX Fault	Normal		0		0.8	V	
I			Receiver				1
Centre Wavel	ength	λc	1260		1580	nm	
Receiver Sens	itivity				-23	dBm	3
Receiver Over	rload		-3			dBm	3
LOS De-Asser	t	LOS_{D}			-24	dBm	
LOS Assert		LOS _A	-35			dBm	
LOS Hysteresi	S		1		4	dB	
Data Output Swing Differential		Vout	400		1800	mV	4
1.05		High	2.0		Vcc	V	
LOS		Low			0.8	V	

Notes:

1. The optical power is launched into SMF.

2. PECL input, internally AC-coupled and terminated.

3. Measured with a PRBS 2^7 -1 test pattern @1250Mbps, BER $\leq 1 \times 10^{-12}$.

4. Internally AC-coupled.

Timing and Electrical

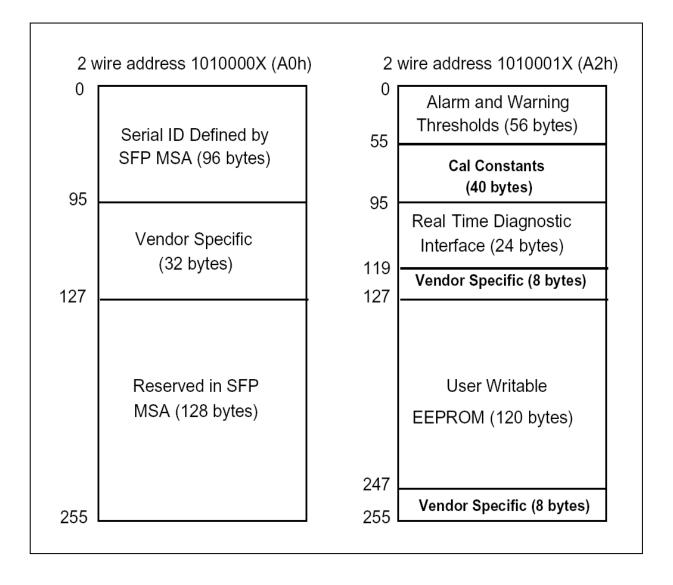
Table 4Timing and Electrical

Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	μs
Tx Disable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock			400	KHz
MOD_DEF (0:2)-High	V _H	2		Vcc	V
MOD_DEF (0:2)-Low	VL			0.8	V

Diagnostics

Table 5Diagnostics Specification

Parameter	Range	Unit	Accuracy	Calibration	
Tomporatura	0 to +70	°C	±3°C	Internal / External	
Temperature	-40 to +85	C	±3 C	miemar/ External	
Voltage	3.0 to 3.6	V	±3%	Internal / External	
Bias Current	0 to 100	mA	±10%	Internal / External	
TX Power	-5 to 0	dBm	±3dB	Internal / External	
RX Power	-23 to -3	dBm	±3dB	Internal / External	



Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.

XenOpt

Pin Definitions

Pin Diagram

Pin	Signal Name	Description	Plug Seq.	Notes
1	Veet	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	V _{EER}	Receiver ground	1	
10	V _{EER}	Receiver ground	1	
11	V _{EER}	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	V _{EER}	Receiver ground	1	
15	V _{CCR}	Receiver Power Supply	2	
16	V _{сст}	Transmitter Power Supply	2	
17	V _{EET}	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	V _{EET}	Transmitter Ground	1	

Pin Descriptions

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

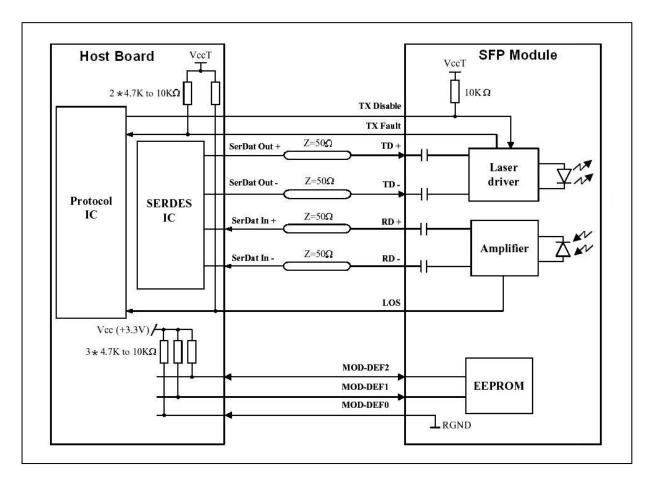
 TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.

2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7k~10kΩ resistor. Its states are:

Low (0 to 0.8V):	Transmitter on
(>0.8V, < 2.0V):	Undefined
High (2.0 to 3.465V):	Transmitter Disabled
Open:	Transmitter Disabled

3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7k^{-10k\Omega}$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

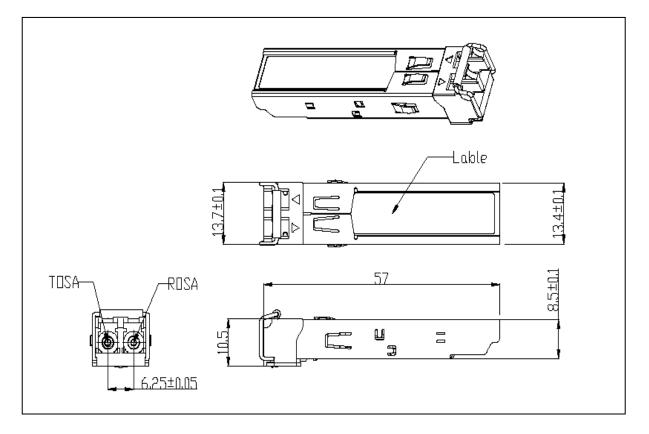
Mod-Def 0 is grounded by the module to indicate that the module is present


Mod-Def 1 is the clock line of two wire serial interface for serial ID

Mod-Def 2 is the data line of two wire serial interface for serial ID

- 4) LOS is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

7


Recommended Interface Circuit

8

Mechanical Dimensions

Regulatory Compliance

XenOpt SFP transceiver is designed to be Class I Laser safety compliant and is certified per the following standards:

Feature	Agency	Standard	Certificate/Comments
Laser Safety	FDA	CDRH 21 CFR 1040 and Laser Notice No. 50	1120295-000
Product Safety	BST	EN 60825-1: 2007 EN 60825-2: 2004 EN 60950-1: 2006	BT0905142001
Environmental protection	SGS	RoHS Directive 2002/95/EC	GZ0902007478/CHEM
EMC	CCIC	EN 55022: 2006+A1: 2007 EN 55024: 1998+A1: 2001+A2: 2003	CTE09020023

9

Ordering information¹

PN	Description
XSS311-40LN	1310 nm, 1.25 Gbps, 40 km, LC, 0ºC ~ +70ºC
XSS311-40LY	1310 nm, 1.25 Gbps, 40 km, LC, 0ºC ~ +70ºC, Digital Diagnostic Monitoring
XSS311-40LL	1310 nm, 1.25 Gbps, 40 km, LC, -40ºC ~ +85ºC
XSS311-40LM	1310 nm, 1.25 Gbps, 40 km, LC, -40ºC ~ +85ºC, Digital Diagnostic Monitoring

Notes:

¹ For accurate order specification please contact XenOpt reseller before placing an order. The content of this document is subject to change without notice.

Please specify any host device compatibility requirements at the time of ordering. Standard MSA compatible pluggable components may not work, or some function of these components may not be available in devices that require customized pluggable devices. Pluggable components that are compatible with one type of communications equipment may not work in other type of communications equipment.

References

1. Small Form Factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA), September 2000.

2. Telcordia GR-253-CORE and ITU-T G.957 Specifications.

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are contains typical values and must be specifically confirmed in writing by XenOpt before they become applicable to any particular order or contract. Specifications may change without notice

The publication of information in this data sheet does not imply freedom from of patent or other protective rights of XenOpt or others. Further details are available from any XenOpt sales representative.

To find out more, please contact

