

XTM85B-M1LY

14.025 Gbps, LC, 150 m, 850 nm, DDM SFP+ Optical Transceiver

Applications

- 14.025 Gbps Fibre Channel
- Other optical links

Features

- Optical interface compliant to IEEE 802.3ae
- Electrical interface compliant to SFF-8431
- Hot Pluggable
- 850nm VCSEL transmitter, PIN photodetector
- Maximum link length of 150 m on 2000 MHz/km MMF
- Low power consumption
- All-metal housing for superior EMI performance
- Advanced firmware allow customer system encryption information to be stored in transceiver
- Cost effective SFP+ solution, enables higher port densities and greater bandwidth
- Operating case temperature: Standard: 0 to +70°C
- RoHS6 compliant (lead free)

Description

This 850 nm VCSEL 14 Gigabit SFP+ transceiver is designed to transmit and receive optical data over $50/125 \, \mu m$ or $62.5/125 \, \mu m$ multimode optical fiber (Table 1).

Fiber type	Minimum modal band width@850nm (MHx.km)	Operating range (meters)
62 5 1100 04045	160	2 to 26
62.5 μm MMF	200	2 to 33
50μm MMF	400	2 to 66
	500	2 to 82
	2000	2 to 100

The SFP+ SR module electrical interface is compliant to SFI electrical specifications. The transmitter input and receiver output impedance is 100 Ohms differential. Data lines are internally AC coupled. The module provides differential termination and reduce differential to common mode conversion for quality signal termination and low EMI. SFI typically operates over 200 mm of improved FR4 material or up to about 150mmof standard FR4 with one connector.

The transmitter converts 14.025Gbit/s serial PECL or CML electrical data into serial optical data compliant with the FC standard. An open collector compatible Transmit Disable (Tx_Dis) is provided. A logic "1," or no connection on this pin will disable the laser from transmitting. A logic "0" on this pin provides normal operation. The transmitter has an internal automatic power control loop (APC) to ensure constant optical power output across supply voltage and temperature variations. An open collector compatible Transmit Fault (TFault) is provided. TX_Fault is a module output contact that when high, indicates that the module transmitter has detected a fault condition related to laser operation or safety. The TX_Fault output contact is an open drain/collector and shall be pulled up to the Vcc_Host in the host with a resistor in the range $4.7-10 \text{ k}\Omega$. TX_Disable is a module input contact. When TX_Disable is asserted high or left open, the SFP+ module transmitter output shall be turned off. This contact shall be pulled up to VccT with a 4.7 k Ω to 10 k Ω resistor The receiver converts 14.025Gbit/s serial optical data into serial PECL/CML electrical data. An open collector compatible Loss of Signal is provided. Rx_LOS when high indicates an optical signal level below that specified in the relevant standard. The Rx_LOS contact is an open drain/collector output and shall be pulled up to Vcc Host in the host with a resistor in the range 4.7-10 k Ω , or with an active termination. Power supply filtering is recommended for both the transmitter and receiver. The Rx_LOS signal is intended as a preliminary indication to the system in which the SFP+ is installed that the received signal strength is below the specified range. Such an indication typically points to non-installed cables, broken cables, or a disabled, failing or a powered off transmitter at the far end of the cable.

Absolute maximum rating

These values represent the damage threshold of the module. Stress in excess of any of the individual Absolute Maximum Ratings can cause immediate catastrophic damage to the module even if all other parameters are within Recommended Operating Conditions.

Parameter	Symbol	Min	Typical	Max	Unit
Power Supply Voltage	VCC	0	+3.3	+3.6	V
Storage Temperature	TC	5	+25	+85	°C
Operating Case Temperature	TC	0	+25	+70	°C
Relative Humidity	RH	5	50	95	%
RX Input Average Power	Pmax	-	-	0	dBm

Recommended operating environment

Recommended Operating Environment specifies parameters for which the electrical and optical characteristics hold unless otherwise noted.

Parameter	Symbol	Min	Typical	Max	Unit
Power Supply Voltage	VCC	+3.135	+3.3	+3.465	V
Operating Case Temperature	TC	0	+25	+70	°C

Low Speed Characteristics

Parameter	Symbol	Min	Typical	Max	Unit
Power Consumption				1. 2	W
TV Fault BV LOC	VOL	0		0.4	V
TX_Fault, RX_LOS	VOH	Host_VCC-0.5		Host_VCC+.0.3	V
	VIL	-0.3		0.8	V
TX_DIS	VIH	2.0		VCCT+0.3	V
DCO DC1	VIL	-0.3		0.8	V
RSO, RS1	VIH	2.0		VCCT+0.3	V

Optical characteristics

The following optical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min	Typical	Max	Unit	Notes	
Transmitter							
Center Wavelength	λt	840	850	860	nm		
RMS spectral width	Pm	-	-	Note1	nm		
Average Optical Power	Pavg	-6.5	-		dBm	2	
Extinction Ratio	ER	3.5	-	-	dB	3	
Transmitter Dispersion Penalty	TDP	-	-	3.9	dB		
Relative Intensity Noise	Rin	-	-	-128	dB/Hz	12 dB reflection	
Optical Return Loss Tolerance		-	-	12	dB		
		Recei	ver				
Center Wavelength	λr	840	850	860	nm		
Receiver Sensitivity	P sens	-	-	-10.5	dBm	4	
Stressed Sensitivity in OMA		-	-	-7.5	dBm	4	
Los function	Los	-30	-	-12	dBm		
Overload	P in	-	-	-1.0	dBm	4	
Receiver Reflectance		-	-	-12	dB		

Note:

- 1. Trade-offs are available between spectral width, center wavelength and minimum OMA, as shown in table 6.
- 2. The optical power is launched into MMF
- 3. Measured with a PRBS 231-1 test pattern @14.025 Gbps
- 4. Measured with a PRBS 231-1 test pattern @14.025 Gbps, BER≤10-12.

Center				RMS S	pectral widt	h (nm)			
Wavelength (mm)	Up to 0,05	0,05 to 0,1	0,1 to 0,15	0,15 to 0,2	0,2 to 0,25	0,25 to 0,3	0,3 to 0,35	0,35 to 0,4	0,4 to 0,45
840 to 842	-4,2	-4,2	-4,1	-4,1	-3,9	-3,8	-3,5	-3,2	-2,8
842 to 844	-4,2	-4,2	-4,2	-4,1	-3,9	-3,8	-3,6	-3,3	-2,9
844 to 846	-4,2	-4,2	-4,2	-4,1	-4,0	-3,8	-3,6	-3,3	-2,9
846 to 848	-4,3	-4,2	-4,2	-4,1	-4,0	-3,8	-3,6	-3,3	-2,9
848 to 850	-4,3	-4,2	-4,2	-4,1	-4,0	-3,8	-3,6	-3,3	-3,0
850 to 852	-4,3	-4,2	-4,2	-4,1	-4,0	-3,8	-3,6	-3,4	-3,0
852 to 854	-4,3	-4,2	-4,2	-4,1	-4,0	-3,9	-3,7	-3,4	-3,1
854 to 856	-4,3	-4,3	-4,2	-4,1	-4,0	-3,9	-3,7	-3,4	-3,1
856 to 858	-4,3	-4,3	-4,2	-4,1	-4,0	-3,9	-3,7	-3,5	-3,1
858 to 860	-4,3	-4,3	-4,2	-4,2	-4,1	-3,9	-3,7	-3,5	-3,2

5

Electrical characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Data Rate		-	-	8.5	Gbps	
Power Consumption		-	-	800	mW	
	Trans	mitter				
Single Ended Output Voltage Tolerance		-0.3	-	4.0	V	
Common Mode Voltage Tolerance		15	-	-	mV	
Tx Input Diff Voltage	VI	400	-	1600	mV	
Tx Fault	VoL	-0.3	-	0.4	V	At 0.7 mA
Data Dependent Input Jitter	DDJ	-	-	0.10	UI	
Data Input Total Jitter	TJ	-	-	0.28	UI	
	Rece	eiver				
Single Ended Output Voltage Tolerance		-0.3	-	4.0	V	
Rx Output Diff Voltage	Vo	300		850	mV	
Rx Output Rise and Fall Time	Tr/Tf	30			ps	20% to 80%
Total Jitter	TJ		-	0.70	UI	
Deterministic Jitter	DJ		-	0.42	UI	

Rate Select Control

RX and TX rates can be independently controlled by hardware input pins RSO and RS1. Module electrical input pins 7 (RSO) and 9 (RS1) are used to select RX and TX rate respectively. The flowing table shows the way how to select rate by RSO and RS1.

RS0 Control Input	RX Operation	Rate Selected	RS1Control Input	TX Operation	Rate Selected
1	RX CDR Enabled	14.025 Gbps	1	TX CDR Enabled	14.025Gbps
0	RX CDR Disabled	8 GFC, 4 GFC	0	TX CDR Disabled	8GFC, 4GFC

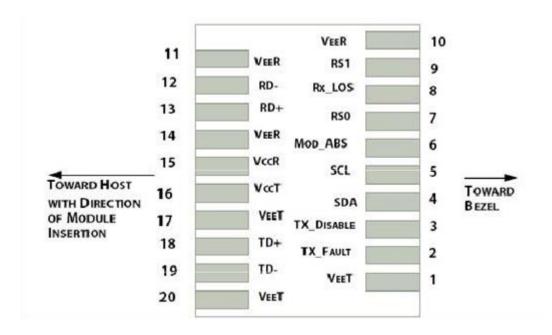


Figure 1: Interface to Host PCB

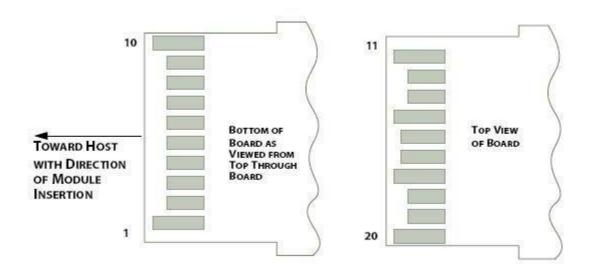


Figure 2: Module Contact Assignment

Pin definition

Pin	Symbol	Name/Description
1	VEET [1]	Transmitter Ground
2	Tx_FAULT [2]	Transmitter Fault
3	Tx_DIS [3]	Transmitter Disable. Laser output disabled on high or open
4	SDA [2]	2-wire Serial Interface Data Line
5	SCL [2]	2-wire Serial Interface Clock Line
6	MOD_ABS [4]	Module Absent. Grounded within the module
7	RS0 [5]	Rate Select 0
8	RX-LOS [2]	Loss of Signal Indication. Logic 0 indicates normal operation
9	RS1 [5]	Rate Select 1
10	VEER [1]	Receiver Ground
11	VEER [1]	Receiver Ground
12	RD-	Receiver Inverted DATA out. AC Coupled
13	RD+	Receiver DATA out. AC Coupled
14	VEER [1]	Receiver Ground
15	VCCR	Receiver Power Supply
16	VCCT	Transmitter Power Supply
17	VEET [1]	Transmitter Ground
18	TD+	Transmitter DATA in. AC Coupled
19	TD-	Transmitter Inverted DATA in. AC Coupled
20	VEET [1]	Transmitter Ground

Notes:

- [1] Module circuit ground is isolated from module chassis ground within the module.
- [2] Should be pulled up with 4.7 k 10 k ohms on host board to a voltage between 3.15 V and 3.6 V.
- [3] Tx_Disable is an input contact with a 4.7 k Ω to 10 k Ω pullup to VccT inside the module.
- [4] Mod_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pull this contact up to Vcc_Host with a resistor in the range 4.7 k Ω to10 k Ω . Mod_ABS is asserted "High" when the SFP+ module is physically absent from a host slot.
- [5] RSO and RS1 are module inputs and are pulled low to VeeT with > 30 k Ω resistors in the module.

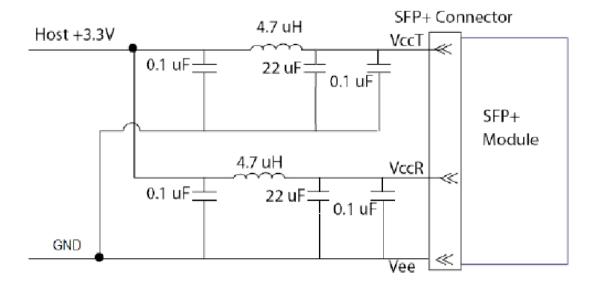


Figure 3. Host Board Power Supply Filters Circuit

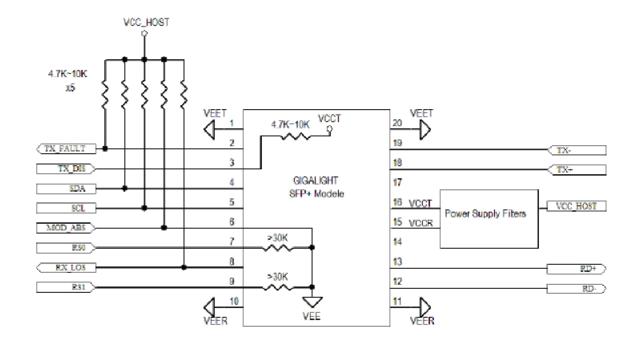


Figure 4. Host-Module Interface

Mechanical Specifications

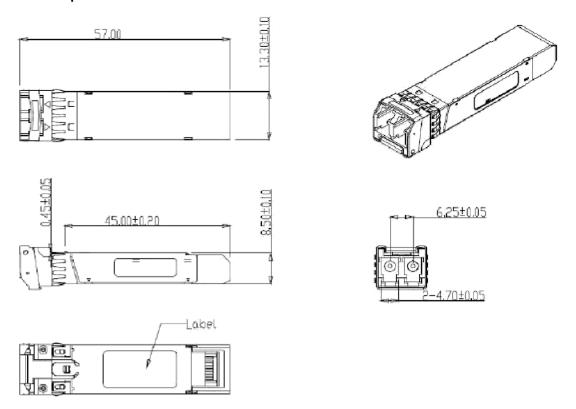


Figure 5. Mechanical specifications

Regulatory Compliance

XenOpt SFP+ transceiver is designed to be Class I Laser safety compliant and is certified per the following standards:

Feature	Agency	Standard	Certificate/Comments
Laser Safety	FDA	CDRH 21 CFR 1040 and Laser Notice No. 50	1120292-000
Product Safety	UL	UL and CUL EN60950-2:2007	E347511
Environmental Protection	SGS	RoHS Directive 2002/95/EC	GZ1001008918/CHEM
EMC	WALTEK	EN 55022:2006+A1:2007 EN 5524:1998+A1+A2:2003	WT10093759-D-E-E

Ordering information¹

PN	Description
XTM85B-M1LY	SFP+, 14 Gbps, 850 nm, 150* m, -0°C ~ +70°C, DDM

^{*: 35} m for OM2 MMF, 100 m for OM3 MMF and 150 m for OM4 MMF. All tested at 14.025 Gbps. Notes:

References

- 1. "Specifications for Enhanced Small Form Factor Pluggable Module SFP+", SFF-8431, Rev 4.1, July 6, 2009.
- 2. "Improved Pluggable Formfactor", SFF-8432, Rev 4.2, Apr 18, 2007
- 3. IEEE802.3ae-2002
- 4. "Diagnostic Monitoring Interface for Optical Transceivers" SFF-8472, Rev 10.3, Dec 1, 2007

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by XenOpt before they become applicable to any particular order or contract. In accordance with the XenOpt policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of XenOpt or others. Further details are available from any XenOpt sales representative.

To find out more, please contact

¹ For accurate order specification please contact Xenopt reseller before placing an order. The content of this document is subject to change without notice. Xenopt does not guarantee errorless or outdated information. Please specify any compatibility requirements at time of ordering. Standard MSA compatible pluggable components may not work or some function of these components may not be available in devices that require customized compatible devices. Pluggable components compatible with one type of communications equipment may not work in other type of communications equipment.