

XTS31U-10Lx

10 G Ethernet 10 km SFP+ Transceiver 10GBASE-LR/10GBASE-LW

Applications

- 10G Ethernet 10GBASE-LR/LW
- 10G Fiber Channel 1200-SM-LL-L

Features

- Compliant with IEEE Std 802.3-2005 10G Ethernet 10GBase-LR/LW
- Electrical interface specifications per SFF-8431
- Management interface specifications per SFF-8431 and SFF-8472
- SFP+ MSA package with duplex LC connector
- Up to 10.3 Gb/s bi-directional data links
- Single +3.3 V power supply
- Class 1 laser safety certified
- Operating temperature Options
 - 0°C to +70°C (Commercial)
 - -40°C to +85°C (Industrial)
- Up to 10 km on 9/125 μm SMF
- RoHS Compliant

Description:

XTS31U-10Lx SFP+ transceivers, according to Enhanced 8.5 and 10 Gigabit Small Form Factor Pluggable "SFP+" Multi-Sourcing Agreement (MSA) SFF-8431 and SFF-8472, revision 10.4, are designed for 10G Ethernet serial optical data communication up to 10km on single mode fiber. They are compliant with IEEE Std 802.3-2005 10Gb Ethernet 10GBase-LR/LW and 10G Fiber Channel 1200-SM-LL-L.

XTS31U-10LY and XTS31U-10LM offer commercial and industrial operating temperature options respectively.

Pin Description

Table 1. Pin Description

Pin	Name	Function Description	Notes
1	VeeT	Transmitter Ground	1
2	TX_Fault	Transmitter Fault (LVTTL-O) - High indicates a fault condition	2
3	TX_Disable	Transmitter Disable (LVTTL-I) – High or open disables the transmitter	3
4	SDA	Two wire serial interface Data Line (LVCMOS-I/O) (MOD-DEF2)	4
5	SCL	Two wire serial interface Clock Line (LVCMOS-I/O) (MOD-DEF1)	4
6	MOD_ABS	Module Absent (Output), connected to VeeT or VeeR in the module	5
7	RSO	Rate Select 0 – Not used, Presents high input impedance	-
8	RX_LOS	Receiver Loss of Signal (LVTTL-O)	2
9	RS1	Rate Select 1 – Not used, Presents high input impedance	-
10	VeeR	Receiver Ground	1
11	VeeR	Receiver Ground	1
12	RD-	Inverse Received Data out (CML-O)	-
13	RD+	Received Data out (CML-O)	-
14	VeeR	Receiver Ground	-
15	VccR	Receiver Power - +3.3V	-
16	VccT	Transmitter Power - +3.3 V	-
17	VeeT	Transmitter Ground	1
18	TD+	Transmitter Data In (CML-I)	-
19	TD-	Inverse Transmitter Data In (CML-I)	-
20	VeeT	Transmitter Ground	1

Notes:

1. The module signal grounds are isolated from the module case.

- 2. This is an open collector/drain output that on the host board requires a $4.7K\Omega$ to $10K\Omega$ pull-up resistor to VccHost.
- 3. This input is internally biased high with a 4.7K α to 10K Ω pull-up resistor to VccT.
- 4. Two-Wire Serial interface clock and data lines require an external pull-up resistor dependent on the capacitance load.
- 5. This is a ground return that on the host board requires a 4.7K Ω to 10K Ω pull-up resistor to VccHost.

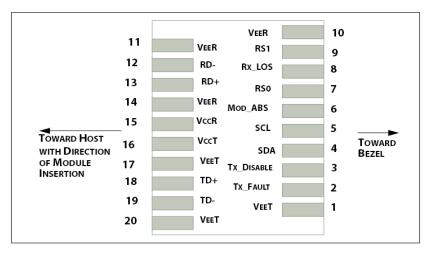


Figure 1: Host PCB SFP+ pad assignment top view

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Table 2. Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Unit
Storage Temperature	Τ _S	-40	85	٥C
Relative Humidity	RH	5	95	%
Supply Voltage	Vcc	-0.5	4.0	V

Recommended Operating Conditions

Table 3. Recommended Operating Conditions

Parar	neter	Symbol	Min	Typical	Max	Unit	
Operating	XTS31U-10LY	т _С	0	25	70	00	
Temperature	XTS31U-10LM	т _С	-40	25	85	оС	
Supply Voltage		VCC	3.135	3.3	3.465	V	
Data Rate		-	-	10.3125	-	Gb/s	

Transceiver Electrical Characteristics

Table 4. Transceiver Electrical Characteristics

Parameter		Symbol	Minimum	Typical	Maximum	Unit	Notes
Module Supply Current		lcc	-	-	300	mA	-
Power Dissip	ation	PD	-	-	1000	mW	-
Transmitter		1					
Input Differe	ential Impedance	Z _{IN}	-	100	-	Ω	-
Differential I	Data Input Swing	V _{IN, P-P}	18 0	-	700	mVp_p	-
	Transmitter Fault	Vон	2.0	-	V _{CCHOST}	V	-
TX_FAULT	Normal Operation	VOL	0	-	0.8	V	-
	Transmitter Disable	VIH	2.0	-	V _{CCHOST}	V	-
TX_DISABLE	Transmitter Enable	VIL	0	-	0.8	V	-
Receiver	1	I					
Output Differential Impedance		ZO	-	100	-	Ω	-
Differential Data Output Swing		Vout, p-p	300	-	850	mV _{P-P}	1
Data Output Rise Time, Fall Time		t _r , t _f	28	-	-	ps	2
	Loss of signal (LOS)	∨ОН	2.0	-	VCCHOST	V	3
RX_LOS	Normal Operation	VOL	0	-	0.8	V	3

Notes:

1. Internally AC coupled, but requires a external 100 Ω differential load termination.

2.20-80%.

3. LOS is an open collector output. Should be pulled up with $4.7 k\Omega$ on the host board.

Transmitter Optical Characteristics

Table 5.	Transmitter	Optical	Characteristics
----------	-------------	---------	-----------------

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Notes
Launch Optical Power	Ро	-8.2	-	+0.5	dBm	1
Center Wavelength Range	λς	1260	1310	1355	nm	-
Extinction Ratio	EX	3.5	-	-	dB	2
Optical Modulation Amplitude	OMA	-5.2	-	-	dBm	
Spectral Width (-20dB)	Δλ	-	-	1	nm	-
Side Mode Suppression Ratio	SMSR	30	-	-	dB	-
Transmitter and Dispersion Penalty	TDP	-	-	3.2	dB	-
Optical Return Loss Tolerance	ORLT	-	-	12	dB	-
Pout @TX-Disable Asserted	Poff	-	-	-30	dBm	1
Eye Diagram	IEEE Std 802.3-2005 10Gb Ethernet 10GBASE-LR compatible					npatible

Notes:

1. The optical power is launched into $9/125\mu m$ SMF.

2. Measured with a PRBS 2^{31} -1 test pattern @10.3125Gbps.

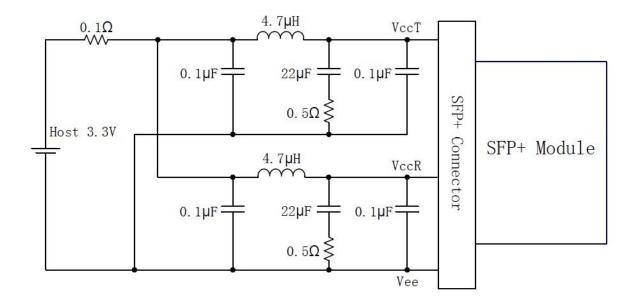

Receiver Optical Characteristics

Table 6. Receiver Optical Characteristics

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Notes
Center Wavelength	λc	1260	1310	1355	nm	-
Receiver Sensitivity (P _{avg})	S	-	-	-14.4	dBm	1
Receiver Sensitivity (OMA)	Soma	-	-	-12.6	dBm	1
Receiver Overload (P _{avg})	Pol	0.5	-	-	dBm	1
Stressed Sensitivity (OMA)	-	-	-	-10.3	dBm	2
Optical Return Loss	ORL	12	-	-	dB	-
LOS De-Assert	LOS _D	-	-	-16	dBm	-
LOS Assert	LOS _A	-30	-	-	dBm	-
LOS Hysteresis	-	0.5	-	-	dB	-

Notes:

- 1. Measured with PRBS 2³¹-1 test pattern, 10.3125Gb/s, BER<10⁻¹².
- 2. Comply with IEEE 802.3-2005

Recommended Host Board Power Supply Filter Network

Figure 2. Recommended Host Board Power Supply Filter Network

Recommended Application Interface Block Diagram

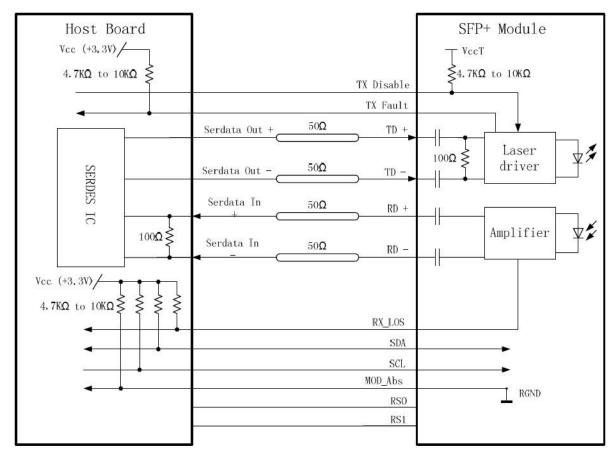
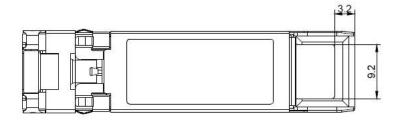
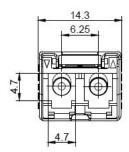
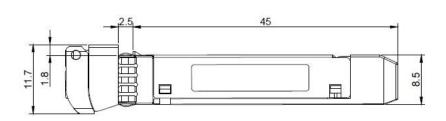
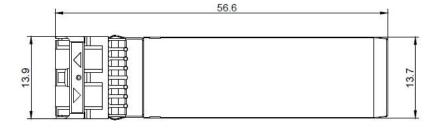





Figure 3. Recommended Application Interface Block Diagram


Mechanical specifications

PCB layout recommendation

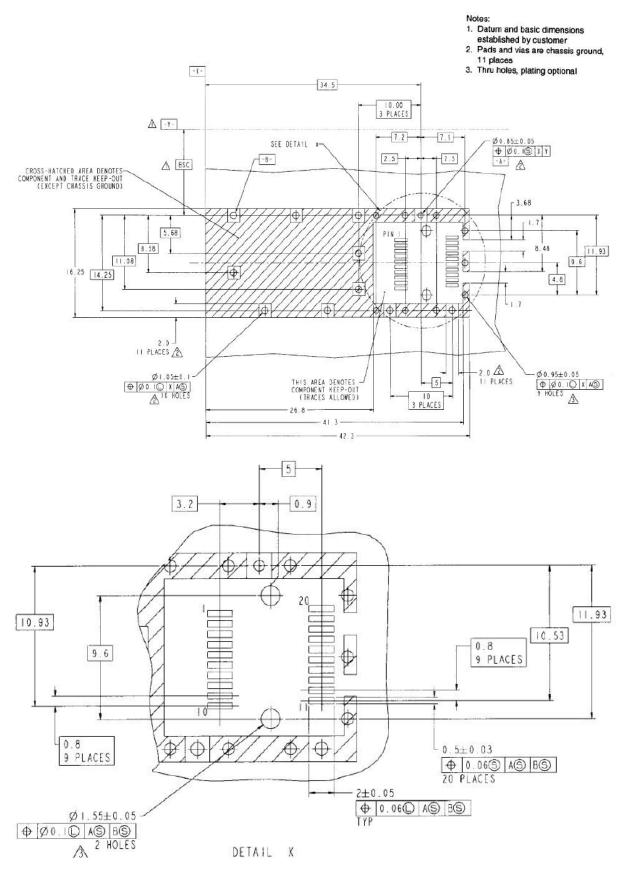


Figure 5. PCB layout recommendation

Ordering information¹

PN	Description
XTS31U-10LY	SFP+ single mode, 1310 nm DFB, 10 GB OC192-STM64, 10 km Reach, LC, DDMI, 0°C ~ 70°C, RoHS Compliant
XTS31U-10M	SFP+ single mode, 1310 nm DFB, 10 GB OC192-STM64, 10 km Reach, LC, DDMI, -40°C ~ 85°C, RoHS Compliant

Notes:

¹ For accurate order specification please contact Xenopt reseller before placing an order. The content of this document is subject to change without notice. Xenopt does not guarantee errorless or outdated information. Please specify any compatibility requirements at time of ordering. Standard MSA compatible pluggable components may not work or some function of these components may not be available in devices that require customized compatible devices. Pluggable components compatible with one type of communications equipment may not work in other type of communications equipment.

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by XenOpt before they become applicable to any particular order or contract. In accordance with the XenOpt policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of XenOpt or others. Further details are available from any XenOpt sales representative.

To find out more, please contact:

