

XDB431-20Lx

1.25 Gbps CSFP BIDI Transceiver 20 km DDM

Applications

- 1000BASE BX IEEE802.3ah
- Point to Point FTTH
- Switched Backplane Applications
- Router/Server Interface
- Switch to Switch Interface
- Other Optical Links

Features

- Compliant with IEEE Std 802.3-2005, 1000BASE-BX-D
- Compliant with SFF-8074i and SFF-8472, revision 9.5
- Compliant with SFP MSA Specification
- Digital Diagnostic Monitoring available
- Uncooled 1490 nm DFB Laser
- Up to 1.25Gb/s bi-directional data links
- Up to 20 km on 9/125 μm SMF
- Simplex LC connector compliant
- Single +3.3 V DC power supply
- Hot-pluggable CSFP footprint
- · Class 1 laser safety certified
- Operating temperature options:
 - -10°C to +70°C (Commercial)
 - -10°C to +85°C (Extended)
 - -40°C to +85°C (Military)
- RoHS6 Compliant

Description

XDB431-20Lx CSFP transceivers, according to Compact Small Form Factor Pluggable Multi-Sourcing Agreement (MSA) option 2, consist of 2-channel Bi-directional Optical Transceiver unit with five sections: the LD driver, the limiting amplifier, the digital diagnostic monitor, the 1490 nm DFB laser and the PIN photo-detector. The module data link up to 20 km in $9/125~\mu m$ single mode fiber.

XDB431-20Lx CSFP transceivers offer a wide range of design options, including Digital Diagnostic Monitoring (DDM) features and three temperature options (commercial, extended or industrial).

XDB431-20Lx CSFP are compliant with RoHS.

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Table 1. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Storage Temperature	Ts	-40	85	°C
Relative Humidity	RH	5	95	%
Supply Voltage	Vcc	-0.5	4	V

Recommended Operating Conditions

Table 2. Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
	Tc	-10	-	70	°C
Operating Case Temperature	Te	-10	-	85	°C
	Ti	-40	-	85	°C
Supply Range	Vcc	3.15	3.3	3.45	V
Data Rate	-	-	1.25/1.25	-	Gb/s

Transceiver Electrical Characteristics

Table 3. Transceiver Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Module Supply Current	lcc	-	-	450	mA
Power Dissipation	P _D	-	-	1.5	W
Low speed output: ¹ Transmitter Fault (TX_FAULT)/ Loss of Signal (LOS)	V _{OH}	2.0	-	V _{cc} +0.3	V
	V _{OL}	0	-	0.8	V
Low speed input: ²	V _{IH}	2.0	-	V _{cc} +0.3	V
Transmitter Disable (TX_DISABLE), MOD_DEF 1, MOD_DEF 2	V _{IL}	0	-	0.8	V

Notes

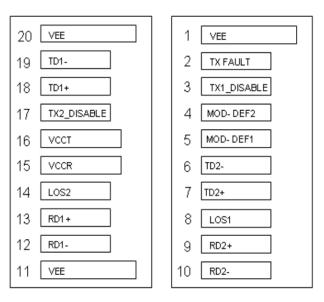
- 1. Pulled up externally with a $4.7 K\Omega$ -10 k Ω resistor on the host board to $V_{CCT,R}$.
- 2. Mod_Def1 and Mod_Def2 must be pulled up externally with a 4.7 kK Ω -10K Ω resistor on the host board to $V_{CCT,R}$.

Transmitter Optical Characteristics

Table 4. Transmitter Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit
Launch Optical Power	Ро	-9	-	-3	dBm
Center Wavelength Range	λc	1470	1490	1510	nm
Extinction Ratio	EX	9	-	-	dB
Spectral Width (-20 dB) @1490 nm	Δλ	-	-	1	nm
Pout @TX-Disable Asserted	P_{off}	-	-	-45	dBm
Eye Diagram	Compliant with IEEE802.3 ah (class 1 laser safety)				

Receiver Optical Characteristics


Table 5. Receiver Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit
Wavelength Range	-	1260	1310	1360	nm
Receiver Sensitivity ¹	S	-	-	-20	dBm
Receiver Overload ¹	P _{OL}	-3	-	-	dBm
Optical Return Loss	ORL	12	-	-	dB
LOS De-Assert	LOS _D	-	-	-22	dBm
LOS Assert	LOS _A	-35	-	-	dBm
LOS Hysteresis	-	0.5	3	5	dB

Notes

1. Measured with PRBS 2^7 -1 test pattern, 1.25 Gb/s, EX=9 dB, BER<10⁻¹².

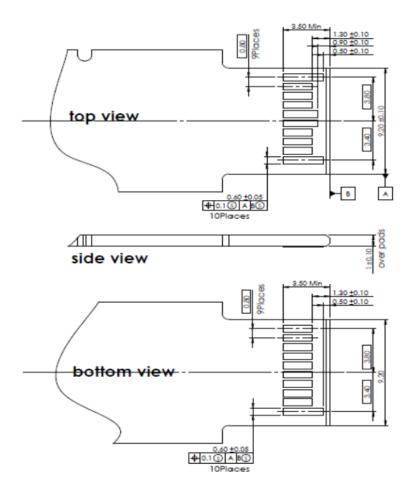
Pin Definition

Top view of Board

Bottom view of Board (As view through top of board)

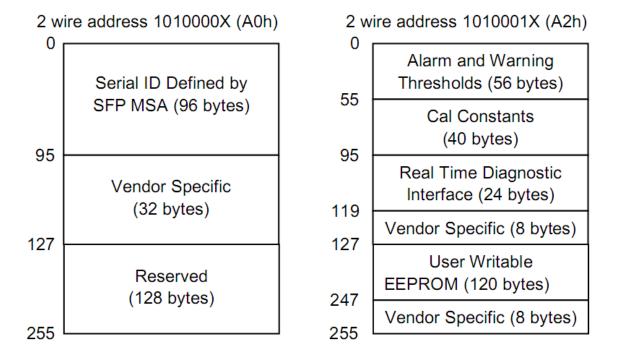
Figure 1. Pin out of Connector Block on Host Board

Pin Description


Table 6. Pin Description

Pin	Name	Function/Description	Notes
1	VEE	Transceiver Ground	VEE may be internally connected within the SFP module
2	TX Fault	Transmitter Fault Indication	TX Fault is an open collector/ drain output, which should be pulled up with a 4.7K-10K resistor on the host board. Note 1 for more information
3	TX1_ Disable	Transmitter Disable of Ch A	Module channel A disables function
4	MOD-DEF2	Two-wires interface Data	2 wire serial ID interface, SDA
5	MOD-DEF1	Two-wires interface Clock	2 wire serial ID interface, SCL
6	TD2-	Inverted Transmit Data Input of Ch B	These are the differential transmitter puts. They are AC-coupled, differential lines with
7	TD2+	Transmit Data Input of Ch B	100 differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board
8	LOS1	Loss of Signal of Ch A	Loss of Signal detected function. Note 2 for more information.
9	RD2+	Received Data Output of Ch B	These are the differential receiver outputs.
10	RD2-	Inverted Received Data Output of Ch B	They are AC coupled 100 differential lines which should be terminated with 100(differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board.
11	VEE	Transceiver Ground	VEE may be internally connected within the SFP module.
12	RD1-	Inverted Received Data Output of Ch A	These are the differential receiver outputs. They are AC coupled 100 differential lines
13	RD1+	Received Data Output of Ch A	which should be terminated with 100(differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board.
14	LOS2	Loss of Signal of CH B	Loss of Signal detected function. Note 2 for more information.
15	VCCR	Receiver Power	$3.3V\pm$ 5%. Note 3 for more information
16	VCCT	Transmitter Power	$3.3V\pm$ 5%. Note 3 for more information
17	TX2_ Disable	Transmitter Disable of Ch B	Module channel B disables function
18	TD1+	Transmit Data Input of Ch A	These are the differential transmitter puts.
19	TD1-	Inverted Transmit Data Input of Ch A	They are AC-coupled, differential lines with 100 differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board
20	VEE	Transceiver Ground	VEE may be internally connected within the SFP module.

Notes


- 1. When high, output indicates a laser fault of some kind either in Channel A or Channel B. The Host shall read Channel A/B for details: TX Fault from channel A if bit 2 is set in [A2H:110]; TX Fault from channel B if bit 2 is set in [B2H: 110]. Low indicates normal operation. In the low state, the output will be pulled to < 0.8 V.
- 2. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.4 V.
- 3. VccT VccR are the power supplies. They are defined as 3.3 V ±5% at the SFP connector pin. Maximum supply current is 400 Ma@3.3 V. Vcc may be internally connected within the SFP transceiver module.

Digital Diagnostic Memory Map

Channel 1:

Channel 2:

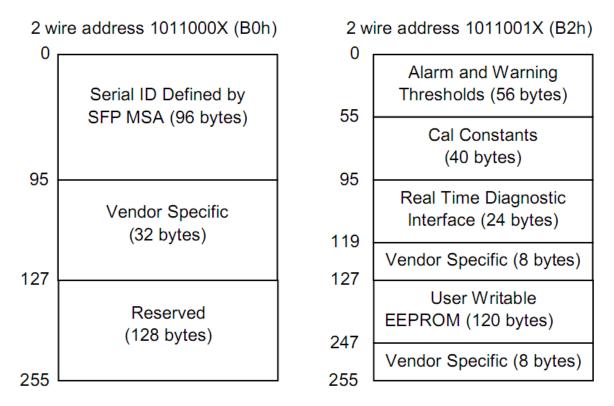


Figure 2. Digital Diagnostic Memory Map Specific Data Field Descriptions

EPROM Serial ID Memory Contents

The CSFP MSA defines a 256-byte memory map in E2PROM that is accessible over a 2-wire serial interface at the 8 bit address 1010000X (A0h) or 1011000X(B0h). The digital diagnostic monitoring interface makes use of the 8 bit address 1010001X (A2h) or 1011001X(B2h), so the originally defined serial ID memory map remains unchanged.

Table 7. Data Fields for 2ch Compact SFP

Data Address	Name of the Field	Contents (Hex)	Description
0	Identifier	03	SFP
1	Ext. Identifier	04	SFP function is defined by serial ID
2	Connector	07	LC
3-10	Transceiver	00 00 00 40 12 00 01 01	1000BASE-BX-D
11	Encoding	01	8 B/10 B
12	BR, Nominal	0C	1.25 Gb/s
13	Reserved	00	-
14	Length (9 μm) km	14	20 km
15	Length (9 μm) 100m	28	20000 m
16	Length (50 μm) 10m	00	-
17	Length (62.5μm) 10m	00	-
18	Length (Copper)	00	-
19	Reserved	00	-
20-35	Vendor name	4C 49 4E 4B 54 45 4C 20 20 20 20 2020 20 20 20	"XENOPT"(ASCII)
36	Reserved	00	
37-39	Vendor OUI	00 00 00	
40-55	Vendor PN	4C 58 32 35 30 32 xx 44 52 20 20 20 20 20 20 20	"XDB431-20Lx " (ASCII)
56-59	Vendor rev	31 2E 30 00	Rev 1.0 (ASCII)
60-61	Wavelength	05 D2	1490 nm
62	Reserved	00	
63	CC BASE	xx	Check sum of bytes 0 - 62
64-65	Options	00 12	LOS, TX_DISABLE
66	BR, max	00	
67	BR, min	00	
68-81	Vendor SN	31 34 30 30 30 38 32 32 20 20 20 20 20 20	Serial Number of transceiver (ASCII). For example "14000822".
82		2D	2Dh, ASCII code of "-"
83		32	Channel number in ASCII code(31h for ch1 and 32h for ch2)

84-91	Vendor date code	xx xx xx xx xx xx 20 20	Year (2 bytes), Month (2 bytes), Day (2 bytes)
92	Diagnostic type	68	Diagnostics (Internally Cal)
93	Enhanced option	90	Diagnostics(Optional Alarm/warning flags, Soft TX_LOS monitoring)
94	SFF-8472	02	Diagnostics(SFF-8472 Rev 9.5)
95	CC_EXT	xx	Check sum for bytes 64-94
96-255		00	

Note

The "xx" byte should be filled in according to practical case. For more information, please refer to the related document of SFF-8472 Rev 9.3.

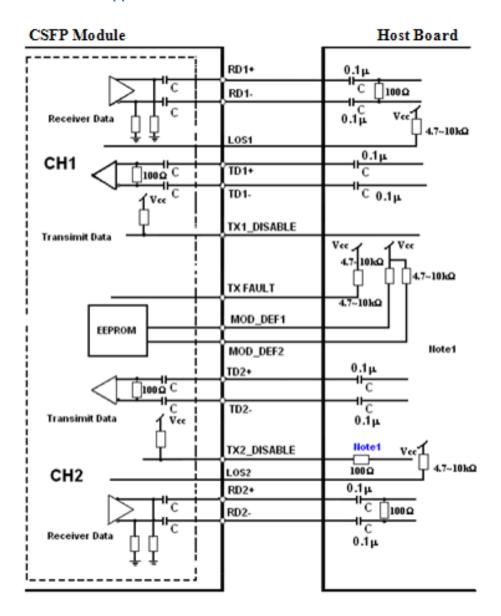
Diagnostic Monitor Specifications

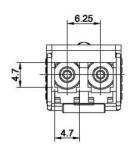
The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through a 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL, Mod Def 1) is generated by the host. The positive edge clocks data into the SFP transceiver into those segments of the E2PROM that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA, Mod Def 2) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

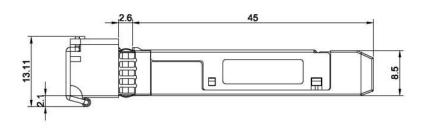
Table 8. Diagnostic Monitor Specifications

Parameter		Range	Accuracy	Calibration
	XDB431-20LY	-15 to +80°C	±3°C	Internal
Temperature	XDB431-20LE	-15 to +95°C	±3°C	Internal
	XDB431-20LM	-40 to +95°C	±3°C	Internal
Voltage		2.9 to 3.6V	±3%	Internal
Bias Current		0 to 80mA	±10%	Internal
TX Power		-10 to -2dBm	±3dB	Internal
RX Power		-21 to -2dBm	±3dB	Internal

Recommended Application Interface Circuit




Figure 3. Recommended Application Interface Circuit


Note 1 Recommendation 100 Ω series resistance on host board.

Mechanical Specification

Unit:mm

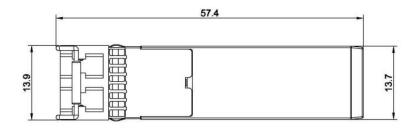


Figure 4. Outline Drawing

Ordering information¹

PN	Description
XDB431-20LY	CSFP BIDI, Transmitter 1490 nm, Receiver 1310 nm, 20 km, LC, DDM, -10°C $^{\sim}$ +70°C
XDB431-20LE	CSFP BIDI, Transmitter 1490 nm, Receiver 1310 nm, 20 km, LC, DDM, -10°C $^{\sim}$ +85°C
XDB431-20LM	CSFP BIDI, Transmitter 1490 nm, Receiver 1310 nm, 20 km, LC, DDM, -40°C $^{\sim}$ +85°C

Notes:

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by XenOpt before they become applicable to any particular order or contract.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of XenOpt or others. Further details are available from any XenOpt sales representative.

To find out more, please contact

¹ Specification may change without notice. For accurate specification please contact XenOpt reseller before placing an order. The content of this document is subject to change without notice. Please specify any compatibility requirements at time of ordering. Standard MSA compatible pluggable components may not work or some function of these components may not be available in devices that require customized compatible devices. Pluggable components compatible with one type of communications equipment may not work in other type of communications equipment.