

XQOxx9-40PY

100 Gbps QSFP28 PSM4 O-band DWDM 40 km Transceiver

Applications

- 100G Ethernet Metro-Access over DWDM
- P to P Access Network

Features

- 4 channels full-duplex transceiver modules
- Transmission data rate up to 26 Gbps per channel
- 4 channels O-band DML DWDM
- Compliant to ITU-T 694.1
- 4 channels PIN photo detector array
- Internal CDR circuits on both receiver and transmitter channels
- Support CDR bypass
- Low power consumption < 5 W
- Hot Pluggable QSFP form factor
- Up to 40 km reach for G.652 SMF with external Mux/Demux, SOA
- Up to 10 km reach for G.652 SMF without external SOA
- Single male MPO (APC 8-degree) connector receptacle
- Single 3.3 V power supply
- RoHS compatible (lead free)
- Operating case temperature
 0 °C to +70 °C (Standard)

Description

XQDxx9-40Px is a Four-Channel Pluggable Parallel Fiber-Optic QSFP28 PSM4 for 100G or 40 Ethernet Metro-Access over DWDM applications. The transceiver is a high performance module for data communication and interconnect applications. It integrates four data lanes in each direction with 104 Gbps bandwidth. Each lane can operate at 26 Gbps up to 40 km over G.652 SMF with external Mux/Demux, SOA. The electrical interface uses a 38 contact edge type connector. The optical interface uses a 12 fiber MTP (MPO) connector. This module provides reliable long life, high performance, and consistent service.

Functional Diagram

100Gb/s QSFP28 PSM4 O-band DWDM is one kind of parallel transceiver. DFB and PIN array package is key technique, through I2C system can contact with module.

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.3	3.6	V
Input Voltage	Vin	-0.3	Vcc+0.3	V
Storage Temperature	Tst	-20	85	°C
Case Operating Temperature	Тор	0	70	°C
Humidity (non-condensing)	Rh	5	85	%

Parameter	Symbol	Min	Typical	Max	Unit
Power Supply Voltage	Vcc	3.13	3.3	3.47	V
Case Operating Temperature	Тса	0		70	°C
Data Rate Per Lane	fd		25.78125		Gbps
Humidity	Rh	5		85	%
Power Dissipation	Pm			5	W
Link Distance with G.652 ¹	D			40	km

3

Recommended Operating Conditions

Note

1. Requires a DWDM line system with amplification and dispersion management.

Electrical Specifications

Parameter	Symbol	Min	Typical	Max	Unit
Differential input impedance	Zin	90	100	110	ohm
Differential Output impedance	Zout	90	100	110	ohm
Differential input voltage amplitude	ΔVin	190		700	mVp-p
Differential output voltage amplitude	ΔVout	300		850	mVp-p
Input Logic Level High	VIH	2.0		VCC	V
Input Logic Level Low	VIL	0		0.8	V
Output Logic Level High	VOH	VCC-0.5		VCC	V
Output Logic Level Low	VOL	0		0.4	V

Notes

1. Differential input voltage amplitude is measured between TxnP and TxnN.

2. Differential output voltage amplitude is measured between RxnP and RxnN

Xen**O**pt

Optical Specifications

Parameter	Symbol	Min	Typical	Max	Unit	
Transmitter						
Centre Wavelength	λς	pe	nm			
Side Mode Suppression Ratio	SMSR	30			dB	
Average launch power, each lane	PAVG	-1		6	dBm	
TDP each lane	TDP			2.9	dB	
Extinction Ratio	ER	4			dB	
Relative Intensity Noise	RIN			-128	dB/Hz	
Optical Return Loss Tolerance	TOL			20	dB	
Transmitter Reflectance	RT			-20	dB	
Average launch power of OFF transmitter, each lane	POFF			-30	dBm	
Eye Mask coordinates ¹ : X1, X2, X3, Y1, Y2, Y3	{0.31,0.4,0.45,0.34,0.38.0.4}					
Receive	er					
Centre Wavelength	λς	1260		1360	nm	
Damage Threshold, each lane ²	THd	5.5			dBm	
Average Receive Power, each lane		-10.6		4.5	dBm	
Receive power, each lane (OMA)				4.5	dBm	
Receiver Reflectance	RR			-26	dBm	
Receiver Sensitivity (OMA), each lane ³	SEN			-8.6	dBm	
LOS Assert	LOSA		-18		dBm	
LOS De-Assert – OMA	LOSD		-15		dBm	
LOS Hysteresis	LOSH	0.5			dB	

Notes

1. Hit Ratio = 5x10⁻⁵

2. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.

3. Sensitivity is specified at $1x10^{-12}$ BER at 25.78125 Gb/s

	TX1		TX2		ТХЗ		TX4	
Product Code	Ch. No.	Frequency (THz)	Ch. No.	Frequency (THz)	Ch. No.	Frequency (THz)	Ch. No.	Frequency (THz)
XQO019-40Px	01	233.6	02	233.45	03	233.3	04	233.15
XQO059-40Px	05	233	06	232.85	07	232.7	08	232.55
XQO109-40Px	10	232.25	11	232.1	12	231.95	13	231.8
XQO149-40Px	14	231.65	15	231.5	16	231.35	17	231.2

$\textbf{O-band} \ \textbf{\lambda c} \ \textbf{Wavelength} \ \textbf{Grid}$

Xen Opt

Ordering information¹

Part number	Product Description
XQDxx9-40PN	QSFP28 PSM4 DWDM O-band 100 Gbps Transceiver, 40 km, MPO, 0-70°C
XQDxx9-40PY	QSFP28 PSM4 DWDM O-band 100 Gbps Transceiver, 40 km, MPO, 0-70°C, DDM
	xx: 01 – Ch. 01-04, 05 – Ch. 05-08, 10 – Ch. 10-13, 14 – Ch. 14-17

5

Notes

¹ For accurate order specification please contact XenOpt reseller before placing an order. The content of this document is subject to change without notice. XenOpt does not guarantee errorless or outdated information.

Please specify any compatibility requirements at time of ordering. Standard MSA compatible pluggable components may not work or some function of these components may not be available in devices that require customized compatible devices. Pluggable components compatible with one type of communications equipment may not work in other type of communications equipment.

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by XenOpt before they become applicable to any particular order or contract. In accordance with the XenOpt policy of continuous improvement specifications may change without notice.

The product image is only for reference purpose

The publication of information in this data sheet does not imply freedom from patent or other protective rights of XenOpt or others. Further details are available from any XenOpt sales representative.

To find out more, please contact:

