

XSB431-40xx

1.25 Gbps SFP Bi-Directional Transceiver, 40 km Reach 1490 nm TX/1310 nm RX

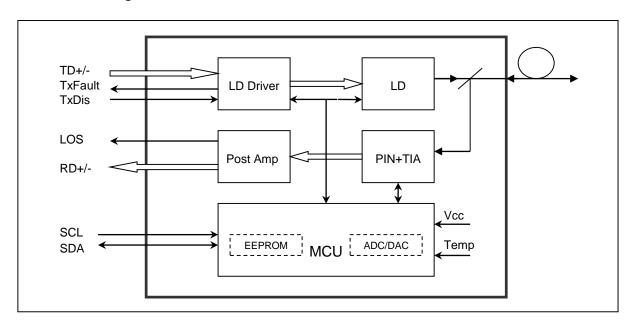
Applications

- Gigabit Ethernet
- Fiber Channel
- Switch to Switch interface
- Switched backplane applications
- Router/Server interface
- Other optical transmission systems

Features

- Dual data-rate of 1.25Gbps/1.063Gbps operation
- 1490nm DFB laser and PIN photodetector for 40km transmission
- Compliant with SFP MSA and SFF-8472 with simplex LC or SC receptacle
- Digital Diagnostic Monitoring:
- Internal Calibration or External Calibration
- Compatible with SONET OC-24-LR-1
- Compatible with RoHS
- +3.3V single power supply
- Operating case temperature range of 0°C to +70°C (Commercial) or -40°C to +85°C (Industrial)

Description


The SFP-BIDI transceivers are high performance, cost effective modules supporting dual data-rate of 1.25Gbps/1.0625Gbps and 40km transmission distance with SMF.

The transceiver consists of three sections: a DFB laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements.

The transceivers are compatible with SFP Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA.

Module Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Parameter		Symbol	Min	Typical	Max	Unit	
Operating Case Temperature		Commercial	Tc -	0		+70	°C
Operating	erating Case Temperature Industrial			-40		+85	°C
Power Supply Voltage		Vcc	3.13	3.3	3.47	V	
Power Supply Current		lcc			300	mA	
Gigabit Ethernet				1.25		Gbps	
Data Rate Fiber Channel				1.063		guþs	

Optical and Electrical Characteristics

Para	ameter	Symbol	Min	Typical	Max	Unit	Notes
		Tra	nsmitter				
Centre Waveler	ngth	λc	1470	1490	1510	nm	
Spectral Width	(-20dB)	Δλ			1	nm	
Side Mode Supp	oression Ratio	SMSR	30			dB	
Average Output	Power	Pout	-5		0	dBm	1
Extinction Ratio	1	ER	9			dB	
Optical Rise/Fal	l Time (20%~80%)	t _r /t _f			0.26	ns	
Data Input Swin	ng Differential	V _{IN}	400		1800	mV	2
Input Differenti	al Impedance	Z _{IN}	90	100	110	Ω	
TV D: 11	Disable		2.0		Vcc	V	
TX Disable	Enable		0		0.8	V	
TV 5 1:	Fault		2.0		Vcc	V	
TX Fault	Normal		0		0.8	V	
<u>'</u>		R	eceiver				
Centre Waveler	ngth	λc	1260		1360	nm	
Receiver Sensiti	vity				-23	dBm	3
Receiver Overlo	oad		-3			dBm	3
LOS De-Assert		LOS _D			-24	dBm	
LOS Assert		LOS _A	-35			dBm	
LOS Hysteresis			1		4	dB	
Data Output Sw	ving Differential	Vout	400		1800	mV	4
1.00		High	2.0		Vcc	V	
LOS		Low			0.8	V	

Notes:

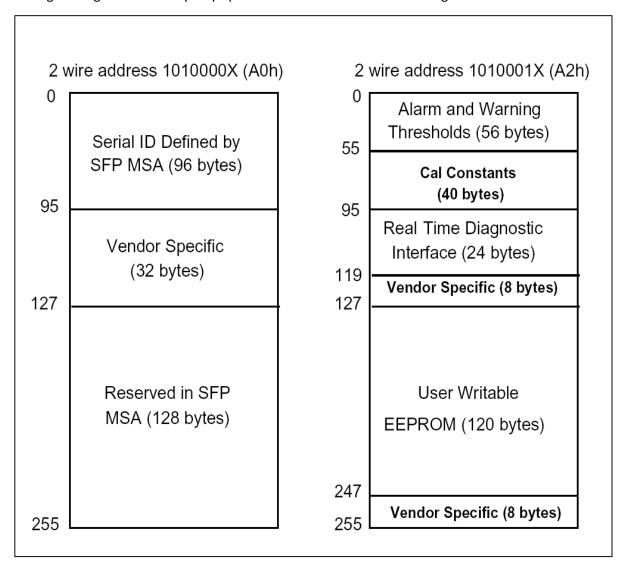
- 1. The optical power is launched into SMF.
- 2. PECL input, internally AC-coupled and terminated.
- 3. Measured with a PRBS 2^7 -1 test pattern @1250Mbps, BER $\leq 1 \times 10^{-12}$.
- 4. Internally AC-coupled.

Timing and Electrical

Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	μs
Tx Disable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock			400	KHz
MOD_DEF (0:2)-High	V _H	2		Vcc	V
MOD_DEF (0:2)-Low	V _L			0.8	V

Diagnostics Specification

Parameter	Range	Unit	Accuracy	Calibration	
Temperature	0 to +70	°C	±3°C	Internal / External	
remperature	-40 to +85		±3 C	internal / External	
Voltage	3.0 to 3.6	V	±3%	Internal / External	
Bias Current	0 to 100	mA	±10%	Internal / External	
TX Power	-5 to 0	dBm	±3dB	Internal / External	
RX Power	-23 to -3	dBm	±3dB	Internal / External	



Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.

Pin Definitions

Pin Diagram

20 VeeT] 1	VeeT
19 TD-	2	TxFault
18 TD+	3	Tx Disable
17 VeeT] 4	MOD-DEF(2)
16 VccT	5	MOD-DEF(1)
15 VccR	6	MOD-DEF(0)
14 VeeR] 7	Rate Select
13 RD+	8	LOS
12 RD-	9	VeeR
11 VeeR] 10	VeeR
Top of Board	Bott	om of Board (as viewed thru top of board)

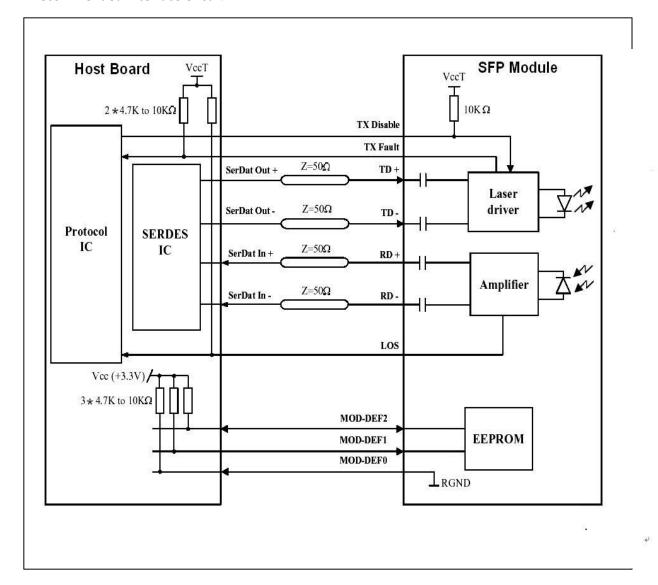
6

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	V _{EET}	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	V _{EER}	Receiver ground	1	
10	V _{EER}	Receiver ground	1	
11	V _{EER}	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	V _{EER}	Receiver ground	1	
15	V_{CCR}	Receiver Power Supply	2	
16	V _{CCT}	Transmitter Power Supply	2	
17	V _{EET}	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	V _{EET}	Transmitter Ground	1	

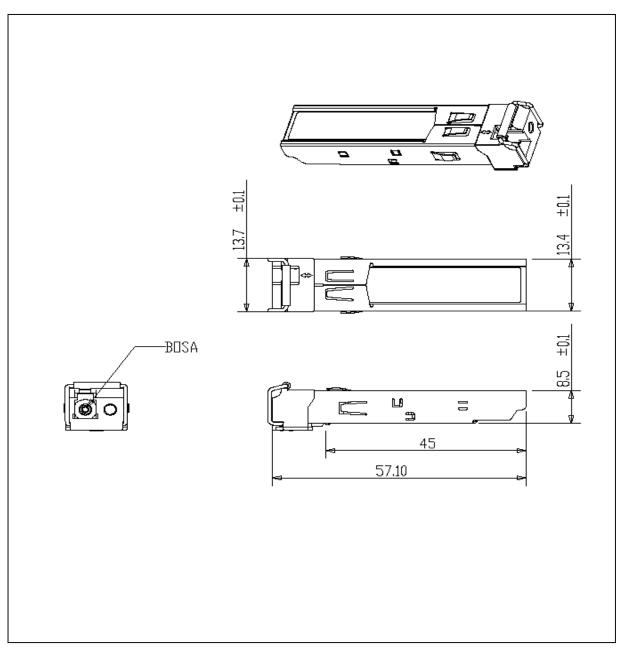
Notes:

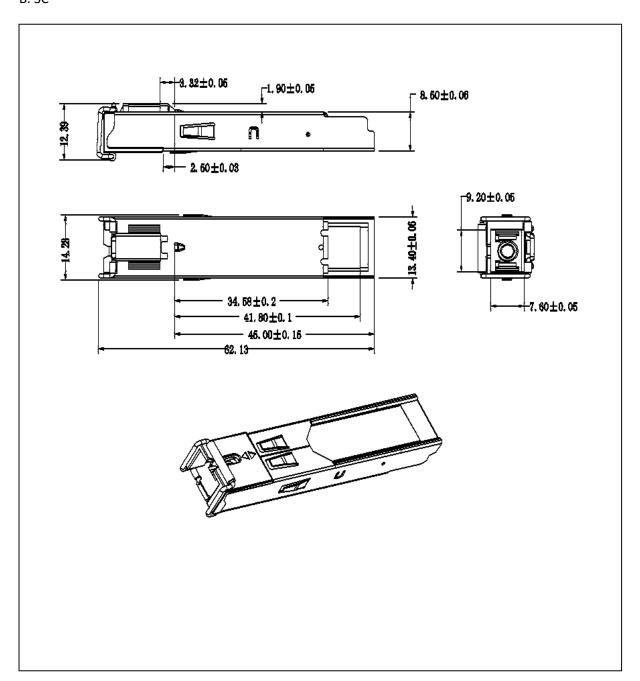
Plug Seq.: Pin engagement sequence during hot plugging.


- 1) TX Fault is an open collector output, which should be pulled up with a $4.7k^{\sim}10k\Omega$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k^{\sim}10k\Omega$ resistor. Its states are:

Low (0 to 0.8V): Transmitter on (>0.8V, < 2.0V): Undefined High (2.0 to 3.465V): Transmitter Disabled Open: Transmitter Disabled

- 3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7k^{\sim}10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.
 - Mod-Def 0 is grounded by the module to indicate that the module is present
 - Mod-Def 1 is the clock line of two wire serial interface for serial ID
 - Mod-Def 2 is the data line of two wire serial interface for serial ID
- 4) LOS is an open collector output, which should be pulled up with a $4.7k^{\sim}10k\Omega$ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.


Recommended Interface Circuit


Mechanical Dimensions

A. LC

B. SC

Regulatory Compliance

XenOpt SFP-BIDI transceiver is designed to be Class I Laser safety compliant and is certified per the following standards:

Feature	Agency	Standard	Certificate/ Comments
Laser Safety	FDA	CDRH 21 CFR 1040 and Laser	1120289-000
,		Notice No. 50	
		EN 60825-1: 2007	
Product Safety	BST	EN 60825-2: 2004	BT0905142009
		EN 60950-1: 2006	
Environmental protection	SGS	RoHS Directive 2002/95/EC	GZ0902008347/CHEM
EMC WALT		EN 55022:2006+A1:2007	WT10093768-D-E-E
LIVIC	VV/\LILK	EN 55024:1998+A1+A2:2003 -	W110033700 D L L

Ordering information¹

PN	Description
XSB431-40SN	1490 nm, 1.25 Gbps, SC, 40km, 0°C~+70°C
XSB431-40SY	1490 nm, 1.25 Gbps, SC, 40km, 0°C~+70°C, With Digital Diagnostic Monitoring
XSB431-40SL	1490 nm, 1.25 Gbps, SC, 40km, -40°C~+85°C
XSB431-40SM	1490 nm, 1.25 Gbps, SC, 40km, -40°C~+85°C, With Digital Diagnostic Monitoring
XSB431-40LN	1490 nm, 1.25 Gbps, LC, 40km, 0°C~+70°C
XSB431-40LY	1490 nm, 1.25 Gbps, LC, 40km, 0°C~+70°C, With Digital Diagnostic Monitoring
XSB431-40LL	1490 nm, 1.25 Gbps, LC, 40km, -40°C~+85°C
XSB431-40LM	1490 nm, 1.25 Gbps, LC, 40km, -40°C~+85°C, With Digital Diagnostic Monitoring

Notes:

References

- 1. Small Form Factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA), September 2000.
- 2. Telcordia GR-253and ITU-T G.957 Specifications.

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by XenOpt before they become applicable to any particular order or contract. In accordance with the XenOpt policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of XenOpt or others. Further details are available from any XenOpt sales representative.

To find out more, please contact:

¹ For accurate order specification please contact Xenopt reseller before placing an order. The content of this document is subject to change without notice. Xenopt does not guarantee errorless or outdated information. Please specify any compatibility requirements at time of ordering. Standard MSA compatible pluggable components may not work or some function of these components may not be available in devices that require customized compatible devices. Pluggable components compatible with one type of communications equipment may not work in other type of communications equipment.