

XTS318-10LY

8.5Gb/s SFP+ Fibre Channel Optical Transceiver

Applications

Tri Rate 2.125/4.25/8.5Gbs Fiber Channel

Product Highlights

- Up to 8.5Gb/s bi-directional data links
- Hot Pluggable SFP+ footprint
- Built-in digital diagnostic functions
- 1310nm DFB laser transmitter
- Duplex LC connector
- Up to 10km on 9/125um SMF
- Single 3.3V power supply
- Operating case temperature: 0 to 70°C
- RoHS6 compliant (lead free) 100M to10GE

Product description

XenOpt XTS318-10LY SFP+ transceivers are designed for use in Fiber Channel links up to 8.5 Gb/s data rate and up to 10 km link length. They are compliant with FCPI-4 Rev. 8.00 and SFF-8472 Rev 10.2, and compatible with SFF-8432 and applicable portions of SFF-8431 Rev. Xenya XTS318-10LY Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8472, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage. 3.0. The product is RoHS compliant and lead-free per Directive 2002/95/EC.

Absolute Maximum Ratings

These values represent the damage threshold of the module. Stress in excess of any of the individual Absolute Maximum Ratings can cause immediate catastrophic damage to the module even if all other parameters are within Recommended Operating Conditions.

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{cc}	0	+3.8	V
Storage Temperature	Тс	-40	+85	°C
Operating Case Temperature	Тс	0	+70	°C
Relative Humidity	RH	0	85	%

Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Supply Voltage	VCC	3.0	3.3	3.6	V
Supply current	Icc		200	300	mA
Operating Case Temperature	TC	0	25	70	°C
Module Power Dissipation	Pm	-	0.7	1.1	W

- 1. Supply current is shared between VCCTX and VCCRX.
- 2. In-rush is defined as current level above steady state current requirements.

Low Speed Characteristics

Parameter	Symbol	Min	Typical	Max	Unit
Power Consumption				1	W
TX_Fault,RX_LOS	VOL	0		0.4	V
TA_Fault,RA_LO3	VOH	Host_Vcc-		Host_Vcc+0.3	V
TX_DIS	VIL	-0.3		0.8	V
17_515	VIH	2.0		VCCT+0.3	V
RSO,RS1	VIL	-0.3		0.8	V
NSO,NSI	VIH	2.0		VCCT+0.3	V

Optical characteristics

Parameter	Symbol	Min.	Typical	Max	Unit	Ref.
		Transmitter				
Output Opt. Power,8.5 Gb/s	РО	-8.4		+0.5	dBm	1
Optical Wavelength	λ	1285		1345	nm	2
Side Mode Suppression Ratio	SMSRmin	30			dB	2
Optical Modulation Amplitude	OMA	290			uW	2,3
Transmitter and Dispersion Penalty, 8.5 Gb/s	TDP			3.2	dB	4
		Receiver				
Unstressed Receiver OMA Sensitivity, 8.5 Gb/s	RSENSr			0.042	mW	5
Average Received Power	RxMAX			+0.5	dBm	
Optical Center Wavelength	λC	1260		1360	nm	
Return Loss		12			dB	
LOS De-Assert	LOSD			-18	dBm	
LOS Assert	LOSA	-30			dBm	
LOS Hysteresis		0.5			dB	

- 1. High Bandwidth Mode. Class 1 Laser Safety per FDA/CDRH and EN (IEC) 60825 regulations.
- 2. Also specified to meet curves in FC-PI-4 Rev 8.001 Figures 21, 22, and 23, which allow trade-off between wavelength, spectral width and OMA.
- 3. Equivalent extinction ratio specification for Fibre Channel. Allows smaller ER at higher average power.
- 4. For 8.5 Gb/s operation, Jitter values for gamma T and gamma R are controlled by TDP and stressed receiver sensitivity.
- 5. Measured with conformance signals defined in FC-PI-4 Rev. 8.00 specifications. Value in OMA. Measured with PRBS 27-1 at 10-12 BER.

Electrical characteristics

Parameter	Symbol	Min.	Typical	Max	Unit	Ref.
Supply Voltage	VCC	3.00		3.60	V	1
Supply Voltage	Icc		200	300	mA	1
		Transmitter				
Input differential impedance	Rin		100		Ω	2
Single ended data input swing	Vin,pp	150		900	mV	
Transmit Disable Voltage	VD	2		VCC	V	
Transmit Enable Voltage	VEN	Vee		Vee+0.8	V	3
		Receiver				
Single ended data output swing	Vout,pp	300		800	mV	4
Data output rise/fall time,8.5 Gb/s	Tr,tf			60	ps	5
LOS Fault	VLOS fault	2		VCCHOST	V	6
LOS Normal	VLOS norm	Vee		Vee+0.8	V	6

Notes:

- 1. Module power consumption never exceeds 1W.
- 2. AC coupled.
- 3. Or open circuit.
- 4. Into 100 ohm differential termination.
- 5. 20 80 %.
- 6. LOS is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.

General Specifications

Parameter	Symbol	Min.	Typical	Max	Unit	Notes
Data Rate	DR	2.125		8.5	Gb/sec	1
Bit Error Rate	BER			10-12		2
Max. Supported Link Length on 9/125 μm SMF	L		10		Km	3

- 1. 2x/4x/8x Fibre Channel compliant.
- 2. Tested with a PRBS 27-1 test pattern.
- 3. Distances are based on FC-PI-4 Rev. 8.001 and IEEE 802.3 standards.

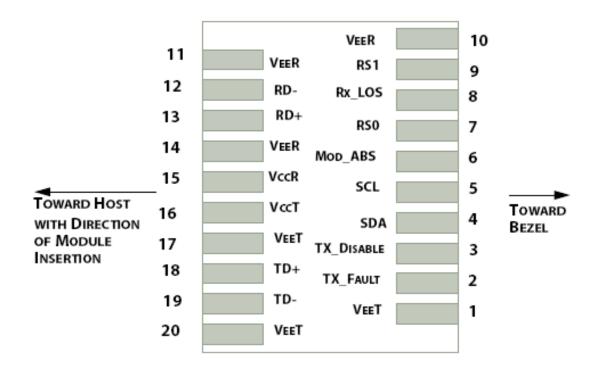


Figure 1: Interface to Host PCB

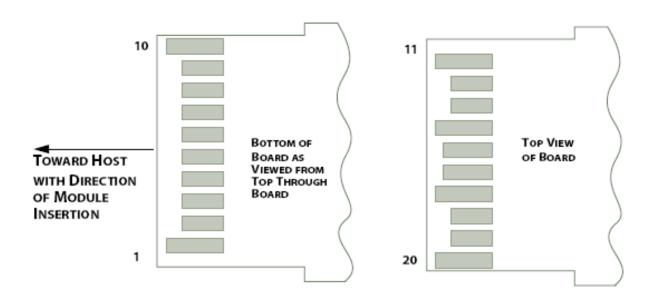


Figure 2: Module Contact Assignment

Pin definition

Pin	Symbol	Name/Description	
1	VEET [1]	Transmitter Ground	
2	Tx_FAULT [2]	Transmitter Fault	
3	Tx_DIS [3]	Transmitter Disable. Laser output disabled on high or open	
4	SDA [2]	2-wire Serial Interface Data Line	
5	SCL [2]	2-wire Serial Interface Clock Line	
6	MOD_ABS [4]	Module Absent. Grounded within the module	
7	RS0 [5]	Rate Select 0	
8	RX_LOS [2]	Loss of Signal indication. Logic 0 indicates normal operation	
9	RS1 [5]	Rate Select 1	
10	VEER [1]	Receiver Ground	
11	VEER [1]	Receiver Ground	
12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver DATA out. AC Coupled	
14	VEER [1]	Receiver Ground	
15	VCCR	Receiver Power Supply	
16	VCCT	Transmitter Power Supply	
17	VEET [1]	Transmitter Ground	
18	TD+	Transmitter DATA in. AC Coupled	
19	TD-	Transmitter Inverted DATA in. AC Coupled	
20	VEET [1]	Transmitter Ground	

- [1] Module circuit ground is isolated from module chassis ground within the module.
- [2]. should be pulled up with 4.7k 10k ohms on host board to a voltage between 3.15V and 3.6V.
- [3] Tx_Disable is an input contact with a 4.7 k Ω to 10 k Ω pullup to VccT inside the module.
- [4] Mod_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pull this contact up to Vcc_Host with a resistor in the range 4.7 k Ω to10 k Ω .Mod_ABS is asserted "High" when the SFP+ module is physically absent from a host slot.
- [5] RSO and RS1 are module inputs and are pulled low to VeeT with > 30 k Ω resistors in the module.

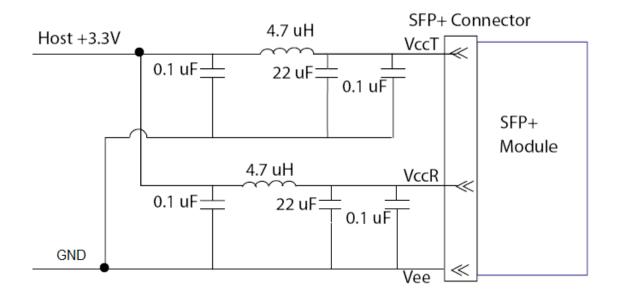


Figure 3. Host Board Power Supply Filters Circuit

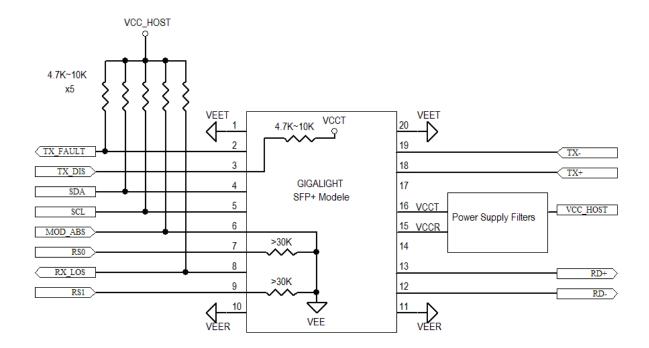


Figure 4. Host-Module Interface

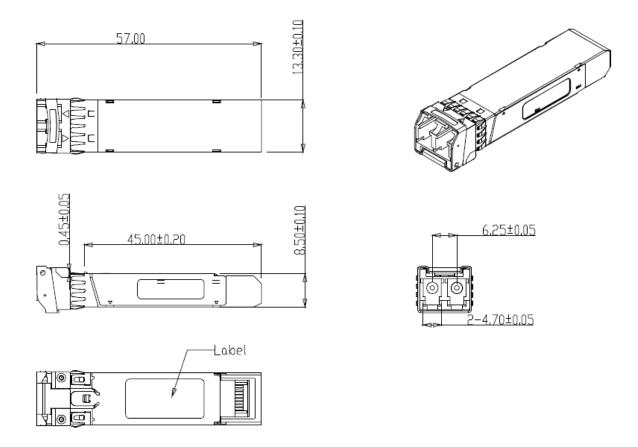


Figure 5. Mechanical Specifications

Regulatory Compliance

 $XenOpt \ SFP+\ transceiver\ is\ designed\ to\ be\ Class\ I\ Laser\ safety\ compliant\ and\ is\ certified\ per\ the\ following\ standards:$

Feature	Agency	Standard	Certificate / Comments
Laser Safety	FDA	CDRH 21 CFR 1040 annd Laser Notice No. 50	1120292-000
Product Safety	UL	UL and CUL EN60950-2:2007	E347511
Environmental protection	SGS	RoHS Directive 2002/95/EC	GZ1001008918/CHEM
EMC	WALTEK	EN 55022:2006+A1:2007 EN 55024:1998+A1+A2:2003	WT10093759-D-E-E

XTS318-10LY

Ordering information

Part Number	Product Description			
XTS318-10LY	1310nm, 2.125/4.25/8.5Gbs, SFP+ 10km, 0°C ~ +70°C			

Notice. Please specify any compatibility requirements at time of ordering. Standard MSA compatible pluggable components may not work or some function of these components may not be available in devices that require customized compatible devices. Pluggable components compatible with one type of communications equipment may not work in other type of communications equipment.

References

- 1. "Specifications for Enhanced Small Form Factor Pluggable Module SFP+", SFF-8431, Rev 4.1, July 6, 2009.
- 2. "Improved Pluggable Formfactor", SFF-8432, Rev 4.2, Apr 18, 2007
- 3. IEEE802.3ae 2002
- 4. "Diagnostic Monitoring Interface for Optical Transceivers" SFF-8472, Rev 10.3, Dec 1,2007

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by XenOpt before they become applicable to any particular order or contract. In accordance with the XenOpt policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of XenOpt or others. Further details are available from any XenOpt sales representative.

To find out more, please contact:

